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(editors)

September 19-22, 2013



Published by:
Faculty of Management
University of Economics
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A Promotion Sale Problem for a

Perihsable Product

Hiroaki Ishii

Department od Mathematical Sciences, School of Science and Technology

Kwansei Gakuin University

e-mail:ishiihiroaki@kwansei.ac.jp

Abstract

In the field of inventory problems, several researchers have been inter-
ested in inventory control for a perishable product such as blood, fresh
fruit, milk, film etc. Here we introduce a promotion sale in order to re-
duce the outdating quantity. We consider the following model. (1) Single
perishable product with two life time period is considered. That is, for a
period, an amount of old one (remaining life time period is 1) in the stock
is given as x2 and under this condition we should determine an ordering
quantity x1 of the fresh one(remaining life time period is 2). (2) Ordering
takes a place at the start of the period. The unit purchasing cost of the
product is c. (3)Issuing policy is LIFO, that is, customer buys fresh one
first and if fresh one is sold out, only some percent of customers over-
flowed from purchase of the fresh one buy the old one. We assume that
this percentage is at most 100q. Unit price of the fresh one is r1 and that
of old one is r2. (4) Prominent feature of our model is a promotion sale,
that is, we sell a set of products consisting of the fresh and old one and it
is sold at the discount unit price rB less than the sum,r1 + r2. We assume
at most 100p percent of the customers puchsing the fresh one accept the
promotion set, that is, buy the old one with the fresh one at the same
time where we assume that p > q. (5) The old one that is not purchased
by the customer and remained outdates and is discarded at the unit cost
θ. While the fresh one not purchsed by the customer is stocked at the
unit cost h. (6) The demand D of the customer is a nonnegative random
variable. Its cummulative distribution function and density function are
F (D) and f(D) respectively where F (0) = f(0) = 0.

Under the above setting, we calculate an expected profit function
E(x1). E(x1) is divided two parts, that is, 0 ≤ x1 ≤ x2

p
and x ≥ x2

p
.

We show E(x1)is concave in either part. Then we investigate an optimal
ordering quantity depending on the conditions ofprices, costs and param-
eters p, q.

Finally we discuss many further research problems including a more
suitable promotion sale and customer preference between price and fresh-
ness.

Hiroaki Ishii
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1 Introduction

In the field of inventory problems, several researchers have been interested in
inventory control for a perishable product such as blood, fresh fruit, milk, film
etc. Though there are huge number of research papers on perishable inventory,
we only cite related papers ([1],[2],[3]). This paper introduce a promotion sale
to the perishable cpntrol problem with life time two and LIFO issuing policy.
Section 2 formulates the problem and calculates total expected profit function.
Section 3 investigates an optimal ordering quantity. Finally section 4 summa-
rizes results of this paper and discusses further research problems.

2 Problem Formulation

We consider the following model.

1. Single perishable product with two life time period is considered. That
is, for a period, an amount of old one (remaining life time period is 1) in
the stock is given as x2 and under this condition we should determine an
ordering quantity x1 of the fresh one(remaining life time period is 2).

2. Ordering takes a place at the start of the period. The unit purchasing
cost of the product is c.

3. Issuing policy is LIFO, that is, customer buys fresh one first and if fresh
one is sold out, only some percent of customers overflowed from purchase
of the fresh one buy the old one. We assume that this percentage is at
most 100q. Unit price of the fresh one is r1 and that of old one is r2. We
assume that r1 ≥ r2 > c without any loss of generality.

4. Prominent feature of our model is a prpmotion sale, that is, we sell a set of
products consisting of the fresh and old ones and it is sold at the discount
unit price rB less than the sum, r1 + r2 but not less than r2 + c. We
assume at most 100p percent of the customers purchasing the fresh one
accept the promotion set, that is, buy the old one with the fresh one at
the same time where we assume that p ≥ q.

5. The old one that is not purchased by the customer and remained outdates
and is discarded at the unit cost θ. While the fresh one not purchsed by
the customer is stocked at the unit cost h.

6. The demand D of the customer is a nonnegative random variable. Its cum-
mulative distribution function and density function are F (D) and f(D)
respectively where F (0) = f(0) = 0.

Under the above setting, we calculate total expected profit function E(x1)

Total expected profit function E(x1)

A Promotion Sale Problem for a Perihsable Product
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Condition that x1 ≥ x2

p

(i) Case D < x1
Amount (x1 −D) (remaining quantity after issued) is stocked.

(a) If pD ≥ x2, then purchased amount as promotion set= x2. Therefore
old ones are sold out. Total profit is

r1(D − x2) + rBx2 − h(x1 −D)− cx1.

(b) If pD ≤ x2, then purchased amount as the fresh one is (1 − p)D,
purchased amount as a promotion set pD and outdating quantity is
(x2 − pD). Therefore total profit is (1− p)D + rBpD − θ(x2 − pD)−
h(x1 −D)− cx1.

(ii) Case D ≥ x1
Note that fresh one and old one are sold out, Thatis, amount (x1 − x2)
is purchased as a fresh one and amount x2 is purchased as promotion set.
Therefore total profit is r1(x1 − x2) + rBx2 − cx1.

Condition that x1 ≤ x2

p

(iii) Case D < x1
Purchased amount as a fresh one is (1− p)D and that as promotion set is
pD. Further amount x1 −D (remaining quantity after issued) is stocked
and amount (x2 − pD) is outdated. Therefore total profit is r1(1− p)D+
rBpD − h(x1 −D)− θ(x2 − pD)

(iv) Case D ≥ x1
Purchased amount as fresh one is (1 − p)x1 and purchased amount as a
promotion set is px1.

(a) Subcase q(D − x1) ≥ x2 − px1
Purchased amount as the old one is x2 − px1. Note that old one
is sold out and so outdated amount is 0. Therefore total profit is
r1(1− p)x1 + rBpx1 + r2(x2 − px1)− cx1

(b) Subcase q(D−x1) ≤ x2−px1 Purchased amount as old one is q(D−x1)
and outdated amount is x2 − px1 − q(D − x1). Therefore total profit
is r1(1− p)x1 + rBpx1 + r2q(D− x1)− θ(x2− px1− q(D− x1))− cx1.

Then expected total profit function E(x1):
For x1 ≥ x2

p

E(x1) =

∫ x1

x2
p

f(D){r1(D − x2) + rBx2 − h(x1 −D)}dD

+

∫ x2
p

0

f(D){r1(1− p)D + rBpD − θ(x2 − pD)− h(x1 −D)}dD

Hiroaki Ishii
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+

∫ ∞

x1

f(D){(x1 − x2)r1 + rBx2}dD − cx1

For x1 ≤ x2

p

E(x1) =

∫ x1

0

f(D){r1(1− p)D + rBpD − h(x1 −D)− θ(x2 − pD)}dD

+

∫ ∞

x1+
x2−px1

q

f(D){r1(1− p)x1 + rBpx1 + r2(x2 − px1)}dD

+

∫ x1+
x2−px1

q

x1

f(D){r1(1− p)x1 + rBpx1 − θ(x2 − px1 − q(D − x1))}dD − cx1

3 Optimal ordering quantity

For x1 ≥ x2

p

dE(x1)

dx1
= r1 − (r1 + h)F (x1)− c

and
d2E(x1)

dx21
= −f(x1)(r1 + h) ≤ 0

For x1 ≤ x2

p

dE(x1)

dx1
= {r1(1− p) + rBp− r2p}+ F (x1 +

x2 − px1
q

){r2 + (p− q)θ}

−{h+ r1(1− p) + rBp+ θ(p− q)}F (x1)− c.
d2E(x1)

dx21
= f(x1 +

x2 − px1
q

)(1− p

q
){r2 + (p− q)θ}

−{h+ r1(1− p) + rBp+ θ(p− q)}f(x1) ≤ 0

since p ≥ q. This shows E(x1) is concave for both parts, that is, for x1 ≥ x2

p
and for x1 ≤ x2

p .

lim
x1→ x2

p −0

dE(x1)

dx1
= r1(1−p) + rBp− r2p− c−{r1(1−p) + rBp− r2p+h}F (

x2
p

)

and

lim
x1→ x2

p +0

dE(x1)

dx1
= r1 − c− (r1 + h)F (

x2
p

).

Further

lim
x1→ x2

p +0

dE(x1)

dx1
− lim

x1→ x2
p −0

dE(x1)

dx1
= p(r1 + r2 − rB)F (

x2
p

) ≥ 0(1)

A Promotion Sale Problem for a Perihsable Product
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and stationary point xa1 that r1 − c− (r1 + h)F (x1) = 0 is

F−1(
r1 − c
r1 + h

).

Therefore depending on whether r1−c
r1+h ≤ F (x2

p ) or not, optimal ordering quan-
tity is determined as follows:

Case I
r1 − c
r1 + h

≤ F (
x2
p

)

In this case, note that the stationary point xa1 ≤ x2

p . Therefore replacing F (x2

p )

by r1−c
r1+h , we have

lim
x1→ x2

p −0

dE(x1)

dx1
≤ hp+ c

r1 + h
(rB − r1 − r2) ≤ 0.

Therefore an optimal ordering quantity xo1 is the stationary point xb1 that

{r1(1− p) + rBp− r2p} + F (x1 +
x2 − px1

q
){r2 + (p− q)θ} −

− {h+ r1(1− p) + rBp+ θ(p− q)}F (x1)−
− c = 0

Case II
r1 − c
r1 + h

≥ F (
x2
p

)

In this case, the stationary point xa1 ≥ x2

p and so

lim
x1→ x2

p +0

dE(x1)

dx1
≥ 0

due to the concavity.
Subcase IIa

r1 − c
r1 + h

≥ F (
x2
p

) ≥ {r1(1− p) + rBp− r2p− c}
{r1(1− p) + rBp− r2p+ h} .

In this subcase, stationary point xb1 ≤ x2

p . and so we compare the value

E(x1)|x1=xa
1

for x1 ≥ x2

p and the value E(x!)|x1=xb
1

for x1 ≤ x2

p . Corresponding
ordering quantity to the greater one is an optimal ordering quantity xo1.

Subcase IIb

F (
x2
p

) ≤ {r1(1− p) + rBp− r2p− c}
{r1(1− p) + rBp− r2p+ h}

In this subcase, there exists no stationary point that

{r1(1− p) + rBp− r2p} + F (x1 +
x2 − px1

q
){r2 + (p− q)θ} −

− {h+ r1(1− p) + rBp+ θ(p− q)}F (x1)−
− c = 0

for the part x1 ≤ x2

p and so optimal ordering quantity xo1 = xa1 .

Hiroaki Ishii
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4 Conclusion

We have discussed a promotion sale problem for the perishable product. But in
our model, we have not considered the shortage cost. Shortage cost is usually
hard to be estimated. Therefore L fuzzy number may be considered and if
it is introduced in our model, the expected total profit function becomes a L
fuzzy number. Using some fuzzy order, we need to seek some non-dominated
ordering quantities since the fuzzy order is not linear order. Further we should
investigate other suitable promotion sales in order to cope with other dealers
and sensitivity about stock amount, prices etc. But these are furture research
problems.

References

[1] Ishii H. (1993), Perishable inventory problem with two types of customers
and different selling prices, Journal of the Operations Reserch Society of
Japan,30(4)199-205

[2] Nahmias S. (1963), Perishable inventory theory: a Review, Operations Re-
search, 30, 680-708.

[3] Katagiri H. and Ishii H. (2003), An inventory problem with a perishable and
non-perishable one, Asia Pacific Management Review, 8(4)477-485

A Promotion Sale Problem for a Perihsable Product

6



On Modeling Planning Problems:

Experience From The Petrobras

Challenge

Roman Barták

Faculty of Mathematics and Physics

Charles University in Prague

bartak@ktiml.mff.cuni.cz

Neng-Fa Zhou

Brooklyn College

The City University of New York

nzhou@acm.org

Abstract

The International Planning Competitions have led to the development
of the standard modeling framework for describing planning domains and
problems Planning Domain Description Language (PDDL). The majority
of planning research is done around problems modeled in PDDL though
there are only a few applications adopting PDDL. The planning model of
independent actions connected only via causal relations is very flexible,
but it also makes plans less predictable (plans look different than expected
by the users) and it is probably also one of the reasons of bad practical
efficiency of current planners (visibly wrong plans are blindly explored by
the planners). In this paper we argue that grouping actions into flexible
sub-plans is a way to overcome the efficiency problems. The idea is that in-
stead of seeing actions as independent entities that are causally connected
via action preconditions and effects, we suggest using a form of finite state
automaton (FSA) to describe the expected sequences of actions. The arcs
in FSA are annotated by conditions guiding the planner to explore only
proper paths in the automaton. The second idea is composing primitive
actions into meta-actions, which decreases the size of FSA and makes
planning much faster. The main motivation is to give users more control
over the action sequencing with two primary goals: obtaining more pre-
dictable plans and improving efficiency of planning. The presented ideas
originate from solving the Petrobras logistic problem, where this technique
outperformed classical planning models.

1 Introduction

Recent research in the area of planning is centered on the representation of prob-
lems in the Planning Domain Description Language introduced for International
Planning Competitions [2]. Having a standard modeling language accelerated
research in the area of planning and led to development of many benchmark
problems that are used to experimentally evaluate and compare various solving

Roman Barták, Neng-Fa Zhou
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approaches. On the other hand, PDDL is based on the original STRIPS idea of
having “independent” actions that can be causally connected via their precon-
ditions and effects into a sequence – a plan. This makes planning flexible but it
also introduces some undesirable behaviors. For example, an action for unload-
ing an item can be planned immediately after an action that loaded the item.
This is causally correct (unloading only requires the item to be loaded which is
achieved by the previous loading action) though from a human perspective such
action sequences are not desirable (the state after unloading will be identical to
the state before loading). It is possible to forbid such situations by changing
the model in such a way that, for example, a transportation action must be
planned between loading and unloading1. However, such enhanced models are
less natural and less readable by humans, and flaws can be easily introduced
in the models if more such modifications are required. It is more natural, if a
human modeler prescribes possible (reasonable) action sequences. There exist
two modeling approaches based on this idea, hierarchical task networks (HTNs)
[9] and timelines [10]. While an HTN uses the notion of task that decomposes
into sub-tasks until primitive actions are obtained, timelines focus on modeling
allowed time evolutions of state variables and synchronizations between them.

In this paper we study a modeling framework positioned half way between
timelines and HTNs. Similarly to [4] we propose to use a finite state automaton
(FSA) describing allowed sequences of actions. An FSA plays the role of effects
and conditions from classical planning as it says which actions may follow a given
action. This FSA can be accompanied by additional constraints restricting when
some transitions between the actions may occur based on the current state of
the world. These conditions are different from classical action preconditions as
they can involve information about the goal (for example, pickup cargo only
when there is some cargo to deliver). This is much closer to control rules [7],
but rather than specifying control rules separately from the description of the
planning domain, we suggest integrating them in the FSA (and also into meta-
actions, see below). This is an original idea of this paper.

We have found that the above modeling approach is not sufficient enough
when solving larger real-life problems and we suggest additional extensions mo-
tivated by the Petrobras challenge. The Petrobras challenge [12] is a logistic
problem of transporting cargo items between ports and oil platforms using ves-
sels with limited capacity. The paper [11] studied three approaches to solve
this problem. The winning technique was based on Monte Carlo Tree Search
(MCTS) where the search was done over sequences of abstract actions. Each
abstract action was then decomposed to primitive actions based on the state
of the world. In this paper we use a very similar idea where we take reason-
able sub-plans (sequences of actions) and encode them as a single meta-action.
The FSA is then defined over these meta-actions. During planning the selected
meta-action decomposes into a sequence of primitive actions depending on the
current situation. There already exists a concept of macro-actions in planning

1The action unload may use some new proposition – a semaphore – as its precondition,
and this proposition is removed by the load action while added by the transport actions.
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[5]. However, while a macro-action decomposes to a fixed sequence of primitive
actions, a meta-action may decompose to different sequences of primitive actions
based on the situation. The concept of meta-actions is closer to HTNs, though
we use only one level of decompositions – from a meta-action to a sequence of
primitive actions. Also, planning in our framework is based on classical action
sequencing rather than on task decomposition.

This paper shows that action grouping and prescribed action sequencing are
very important for the Petrobras challenge. Instead of sophisticated MCTS
method, we use backtracking accompanied by tabling [13] to solve the problem.
As we shall experimentally show the resulting method achieves very similar
performance to the MCTS algorithm. Hence we believe the presented modeling
concepts are important for solving real-life planning problems and may bring
significant efficiency boost.

The paper is organized as follows. We will first briefly introduce the Petro-
bras challenge, highlight some of its important components, and describe the
three techniques already applied to this problem. Then we will present the
proposed modeling framework based on finite state automata, explain the solv-
ing technique, and show how actions can be grouped to meta-actions. After
that we will experimentally compare our method with the current best methods
using the Petrobras benchmarks from [11]. The description of possible future
directions of research will conclude the paper.

2 The Petrobras Challenge

International Competition on Knowledge Engineering for Planning and Schedul-
ing (ICKEPS 2012) brought several real-life motivated modeling and solving
challenges including the Petrobras problem. The Petrobras problem [12] deals
with planning deliveries of cargo items between ports and platforms while re-
specting the capacity limits of vessels, ports, and platforms. The ports and
platforms can serve a limited number of vessels at the same time; the vessels
can transport limited weight of cargo items, vessel’s load influences vessel’s
speed and fuel consumption, and the limited capacity of fuel tanks must also be
assumed when planning transport. Given a set of cargo items to deliver (includ-
ing cargo weights and initial ports), the problem is to find a feasible plan that
guarantees the delivery of all cargo items to given platforms and respects the
constraints on the vessel, port, and platform capacities. Vessels should leave
a waiting area, perform their mission and go back to one of the waiting ar-
eas. Loading and unloading of cargo items are done at ports and platforms and
require some time (vessels must be docked before any operation and undocked
before moving elsewhere). Vessels can be refueled at ports and certain platforms
and each vessels must always have enough fuel to go to the nearest refueling sta-
tion. The following primitive actions with self-explaining names can be used in
the plan: navigate-empty-vessel, navigate-nonempty-vessel, load-cargo, unload-
cargo, refuel-vessel-platform, refuel-vessel-port, dock-vessel, undock-vessel.

So far there was only one attempt to solve the full Petrobras challenge.

Roman Barták, Neng-Fa Zhou
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Toropila et al. [11] applied classical planning, temporal planning, and Monte
Carlo Tree Search (MCTS) to solve the Petrobras challenge. The classical plan-
ning approach used SGPlan 6.0 to generate the initial plan and actions were
scheduled to particular times in the post-processing stage. The temporal plan-
ning approach used PDDL 3.1 with fluents and durative actions and the plan
was generated by the Filuta planner [8]. The last approach exploited Monte
Carlo Tree Search (MCTS) techniques that required a different action model
with four abstract actions: Load, Unload, Refuel, GoToWaitingArea. These ac-
tions describe intentions and they are decomposed to primitive actions based on
the situation. For example, the action Unload assumes that cargo is loaded and
vessel is either in a port or a platform. This action is decomposed in the follow-
ing way. If the current location of the vessel is the same as the target location of
the cargo then only a single underlying action unload-cargo is performed, other-
wise the abstract action is decomposed to the sequence of the original actions:
undock-vessel, navigate-nonempty-vessel, dock-vessel, unload-cargo.

The experiments with the challenge data and randomly generated data,
where the number of vessels and cargo items varied (3-10 vessels, 1-15 cargo
items), showed that the classical planning approach is not viable as it cannot
solve problems with more (7+) cargo items. The MCTS planner was the clear
winner, followed by Filuta that can solve all problems, but the quality of plans
was lower (30% for makespan, 130% for fuel consumption).

3 The Novel Modeling Approach

The Petrobras challenge inspired us to explore the reasons of success of the
MCTS technique. In particular we focused on the “predefined” action sequences
that are hidden in the abstract actions of the MCTS approach and partly also
in the special resource solvers in the Filuta planner. Another motivation for
our research went from the efficient model of the Sokoban game implemented
in B-Prolog [14]. This model was also based on grouping actions into specific
sequences. Our hypothesis is that even a simple search algorithm, for example
depth-first search with tabling, can solve complex planning problems provided
that the model itself guides the solver by describing expected action sequences
rather than giving only independent actions connected via causal relations.

3.1 Model Based on Finite State Automata

Let us first describe the possible plans of each vessel in the Petrobras challenge
as a finite state automaton. Finite state automata (FSA) were shown to signifi-
cantly improve efficiency of constraint-based planners [4] and they are also used
by the Filuta planner [8]. We use the concept where states of the automaton
(nodes) correspond to actions and transitions (arcs) describe allowed action se-
quences. Figure 1 shows the FSA that models all possible actions and transitions
between the actions for a single vessel in the Petrobras domain. We already use
some abstract actions there, for example the action navigate means navigate-
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empty-vessel, if the vessel is empty, or navigate-nonempty-vessel, if some cargo
is loaded to the vessel. Similarly the action refuel means either refuel-vessel-
platform or refuel-vessel-port depending on whether the vessel is docked in a
platform or in a port. Notice also that the presented FSA restricts some action
sequences. In particular, it is not possible to dock immediately after undocking
there is no practical reason for such a sequence of actions though the classical
PDDL model allows it. Similarly, refueling is done only after loading/unloading
– this removes symmetrical sequences of actions with an identical overall effect
(the vessel is loaded/unloaded and refueled). Finally, during one stop at the
port or platform, the FSA allows either loading of cargo or unloading of cargo,
but not both operations together. This is motivated by the particular problem
to be solved. We need to move cargo from ports to platforms and there is no
need to unload a cargo (at some platform) and load another cargo at the same
location. In principle, it might be possible to move cargo to some intermediate
location where it will be picked up by another vessel. However such flexible
plans were not found necessary in the Petrobras challenge. Note finally that all
these sequencing restrictions are naturally modeled using the transitions in the
FSA. If more flexible plans are desirable then the corresponding transitions can
be added to the FSA. We also use another mechanism to restrict sequencing
by putting constraints on the transitions. These constraints describe situations
when the transition is allowed. We will describe these constraints in more detail
later in the text. The classical planning model with action preconditions and
effects makes expressing such allowed action sequences much more complicated
and not very natural (see the footnote 1 in the Introduction).

navigate 

wait 

dock undock 

load 

unload 

refuel 

w
ai1ng	  area 

port	  
pla4orm 

refueling	  sta1on 

loaded 

something	   
to	  load 

Figure 1: Finite state automaton describing actions and allowed transitions
between the actions in the Petrobras challenge.

Actions in the model have specific durations that are given by action param-
eters (such as locations and current load for the navigation actions). Hence, in
the planning terminology we should rather use the notion of a planning operator
and actions are obtained by setting values of the parameters of the operator.
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The capacity of the vessel is modeled within the action, for example, the transi-
tion to a loading action is allowed only if there is enough capacity in the vessel.

So far we discussed plans for a single vessel, but if there are more vessels
in the problem, their plans interact. For example at most two vessels can be
docked at the port at the same time. We check these synchronization constraints
when adding a new action to the plan as described in the next section.

3.2 Solving Approach

The solving algorithm uses the round-robin approach, where an action is selected
for each vessel provided that the last action for that vessel finished before the
rolling horizon. Figure 2 demonstrates the left-to-right round-robing solving
approach that combines planning (action selection) with scheduling (allocation
to time and resources). At the beginning all vessels are waiting so in the first
step, we select an action for each vessel. There is only one exception of this
process – if a vessel is waiting and a new waiting action is selected, we only
prolong the existing waiting action for that vessel. The waiting action is the
only action with arbitrary duration so it is possible to set its duration to any
time. Action selection represents the choice point of the search algorithm. The
only heuristic for action selection is the fixed order of actions in the model
specification, where for example unloading is before loading which is before
refueling for a docked vessel. There are also control rules encoded in the action
descriptions – for example, the navigation action for an empty vessel goes only
to a port with some remaining cargo or to a waiting area.

vessel 1	


vessel	  2	


vessel	  3	


0 1 2 3 

4 5 6 

vessel	  1	


vessel	  2	


vessel	  3	


Figure 2: Illustration of the left-to-right integrated planning and scheduling ap-
proach with a rolling horizon (vertical line). Newly added actions are displayed
as dark rectangles; x-axis represents time.

We have implemented the above solving approach in B-Prolog using tabling
[1]. It means that we use depth-first search with remembering visited states –
the state is represented by the current states of vessels and the list of cargo items
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to be still delivered. In each step, we select an action for each vessel and move
the time horizon. The core idea of this planning algorithm can be described
using the following abstract code (this is actually an executable code in Picat
[3] the follower of B-Prolog):

t a b l e (+,− ,min )
plan (S , Plan , Cost ) , f i n a l (S) =>

Plan =[ ] , Cost =0.
plan (S , Plan , Cost ) =>

ac t i on ( Action , S , S1 , ActionCost ) ,
plan ( S1 , Plan1 , Cost1 ) ,
Plan = [ Action | Plan1 ] ,
Cost = Cost1+ActionCost .

As the reader can see, the search procedure is very simple. The real power of
the solving approach is hidden in the action model and in the tabling mechanism.
Tabling is important to save visited states so they are not re-explored. In the
above code, for each state S the tabling mechanism stores the found Plan while
minimizing the Cost of the plan (the cost is measured by makespan in the
Petrobras problem). It is a form of a branch-and-bound procedure.

3.3 Meta-actions

Though the presented action model already included some sequencing restric-
tions, we have found experimentally that the model did not scale up well. In
fact, it worked only for a single vessel with a few cargo items to deliver. By
exploring the generated plans we noticed two types of erratic behavior. If more
cargo items were available for delivery, all free vessels headed to the port, where
cargo was located. This behavior was caused by preferring the navigation action
to other actions if some cargo should be delivered. As the cargo was available
before the first vessel loaded it, the other vessels “believed” that there is still
some cargo to deliver and so transport to the port was planned for them. The
second problematic behavior was that vessels left the waiting area just to refuel
and then returned back to the waiting area.

Though the näıve model was not competitive to solve the problem, it showed
the core ideas of our proposed modeling approach. The reasonable sequences of
actions are modeled using a finite state automaton. To follow some transition
a specific condition must be satisfied. We can make this model more efficient
by grouping sequences of actions into a meta-action similarly to the MCTS ap-
proach [11]. Each meta-action represents a sequence of primitive actions with
possible alternatives. We propose a model using four meta-actions with more
specific conditions to apply the actions. Figure 3 shows the resulting finite state
automaton including the transition conditions. Each meta-action decomposes
into primitive actions while applying additional conditions on the actions. For
example, the Deliver action starts with the navigate action where the destina-
tion is selected only from the destinations of loaded cargo items (a choice point).
The next action in the sequence is docking followed by unloading and, if pos-
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sible refueling done in parallel with unloading. We always unload all cargo
items for a given destination and we always refuel the full tank (deterministic
choice). The last action in the sequence is undocking. The Deliver action
can only be used if some cargo is loaded to the vessel. Similarly, the Pickup
action is applicable only if the vessel is empty and there is some cargo to de-
liver. We select the port where cargo is available (choice point) and pre-allocate
some cargo items to the vessel (choice point). These conditions ensure that
vessels are moving only when necessary. The Pickup action then decomposes to
navigate, docking, loading and refueling, and undocking actions. Note that
there could be more loading actions if more cargo items are loaded. As the
order of loaded items is not important, only a single sequence of loading actions
is explored during the decomposition (based on the fixed order of cargo items).
This further reduces the search space – equivalent permutations of loading ac-
tions are not explored (similarly for unloading actions). The last two actions
are Waiting and Go2Wait that are applicable if the vessel is empty and it is in
the waiting area (then Waiting) or elsewhere (Go2Wait). The Go2Wait action
decomposes to the navigate action, but if there would not be enough fuel then
the vessel navigates to a refueling station before navigating to the waiting area.
The three actions that include transport – Pickup, Delivery, Go2Wait – force
the vessels to do only“reasonable” moves. If the vessel is empty, it can either
go to a waiting area or to some port to pickup cargo, if any cargo is available.
No other movement is allowed. Similarly, if the vessel is loaded, it can go only
to some platform where some loaded cargo should be delivered.

Pickup 
navigate,	  dock,	  load,{refuel},	  undock	   

Deliver 
navigate,	  dock,	  unload,{refuel},	  undock	   

Go2Wait 
{navigate,	  dock,	  refuel,	  undock},	  navigate	   

Wait 

cargo	  available 
loaded 

loaded 
available	  cargo 
+empty 

empty 

Figure 3: Finite state automaton describing actions and allowed transitions
between the actions in the Petrobras challenge.

The meta-actions allow users to specify expected sub-plans with conditions
when to apply the sub-plans and non-determinism to be resolved by the planner
(what cargo by which vessel). The user has better control about how the plans
look like while leaving some decisions to the solver. The major caveat is some
loss of flexibility. By specifying the sub-plans we may omit possible plans that
were not assumed by the user. For example, in our model, we do not allow to
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pickup new cargo while some cargo is still loaded to the vessel. Also the cargo is
only unloaded at its final destination. In particular, it is not possible to deliver
the cargo half-way and using another vessel to deliver it to the final destination.
These restrictions were intentional to reduce exploration of unwanted plans.

4 Experimental Results

To evaluate the proposed modeling and solving techniques we compare them
with the best approaches from [11], namely the Filuta planner and the MCTS
approach. We do not include SGPlan as its results were poor compared to
other approaches. The Filuta planner minimized makespan identically to our
method, while the MCTS planner used a manually tuned ad-hoc objective func-
tion that combined makespan, the number of actions, and fuel consumption:
usedFuel + 10 ∗ numActions + 5 ∗ makespan. We re-use here the results re-
ported in [11] where the experiments were run on the Ubuntu Linux machine
equipped with Intel Core i7-2600 CPU @ 3.40GHz and 4GB of memory and the
planners were allowed to use approximately 10 minutes of runtime. Our method
was implemented in B-Prolog, we run the experiments on the MacOS X 10.7.5
(Lion) machine with Intel Core i7 CPU @ 1.8 GHz and 4GB of memory, and we
report the best results found within one minute of runtime (we did not observe
any further improvement when running B-Prolog longer).

We will first present the results for the original Petrobras problem described
in [12], which consisted of 10 vessels and 15 cargo items to deliver, with the fuel
tank capacity for all vessels set to 600 liters. Table 1 shows the comparison of
makespan and fuel consumption that were two major objectives in the Petrobras
challenge. We can see that our approach is significantly better than the Filuta
planner in both objectives and it also beats the best so-far approach based on
MCTS in the makespan though the fuel consumption is worse.

Table 1: Results for the Petrobras challenge from [12].

Planner Makespan Fuel

Filuta 263 (1.62x) 1989 (2.24x)
MCTS 204 (1.26x) 887 (1.00x)

B-Prolog 162 (1.00x) 1263 (1.42x)

To compare the approaches in more detail, the paper [11] proposed several
random benchmarks based on the Petrobras domain, where the number of cargo
items to deliver and the number of available vessels varied. They also varied the
fuel tank capacity, but according to the experiments this had a limited impact
of performance so we kept the fuel tank capacity at 600 liters. We used two
scenarios from [11] with 3 vessels and 10 vessels (called Group A and Group
B in [11] ), and we varied the number of cargo items from 1 to 15. Figure 4
shows the comparison of makespan for all three planners. We can observe that
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our approach is better for problems with the smaller number of cargo items,
while the MCTS method takes lead when the number of cargo items increases.
In fact, for the first six problems in each group, our system found (and proved)
makespan-optimal plans, while the other two planners are sub-optimal only. We
were also consistently better than the Filuta planner.

0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

400	  

450	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	  

m
ak
es
pa

n	  

cargo	  items	  

MCTS	  

B-‐Prolog	  

Filuta	  

Group	  A	  (3	  vessels)	   Group	  B	  (10	  vessels)	  

Figure 4: Comparison of makespan for problems with different numbers of cargo
items.

Regarding the fuel consumption (Figure 5), our planner is closer to the Filuta
planner. We are mostly better but there were problems on which Filuta found
plans with less fuel consumption. The MCTS method was consistently the best
planner regarding fuel consumption, though this is not surprising as the other
two planners optimized makespan only.
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Figure 5: Comparison of fuel consumption for problems with different numbers
of cargo items.
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5 Conclusions

We proposed a novel framework for describing planning problems that is based
on meta-actions and transitions between them accompanied by conditions when
the transitions can be used. Each meta-action decomposes into primitive ac-
tions; again specific conditions can be imposed on the parameters of these ac-
tions and also on their composition. The main motivation was to give users
more control over action sequencing with two primary goals: obtaining more
predictable plans and improving efficiency of planning. We demonstrated the
modeling principles using a single domain – the Petrobras challenge – and using
a single solving approach – B-Prolog with tabling. Though the solving tech-
nique is very simple, the proposed approach was shown to be competitive with
the leading technique for the Petrobras problem in terms of plan quality (our
technique was also faster).

The next step is to decouple the modeling approach from the solving mech-
anism and applying it to other planning problems. We sketched the modeling
principles informally; a formal description in the form of a modeling language
is necessary for more general applicability. The presented approach can also
drive further research in the tabling methods applied to optimization problems.
Other solving techniques may also be applied, we are not aware of any current
planner supporting all three presented features: meta-actions, predefined ac-
tion sequencing, and control rules. It would be interesting to study how these
three modeling techniques contribute to plan efficiency. Our preliminary exper-
iments showed that their combination helped to successfully solve the Petrobras
challenge.
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[8] Dvořák F. and Barták, R. (2010), Integrating time and resources into plan-
ning. Proceedings of ICTAI 2010, Volume 2, pp. 71–78, IEEE Computer
Society.

[9] Erol, K.; Hendler, J.; Nau, D. (1994), HTN Planning: Complexity and
Expressivity. Proceedings of AAAI-94, pp. 1123–1128, AAAI Press.

[10] Muscettola, N. (1994), HSTS: Integrating Planning and Scheduling. Intel-
ligent Scheduling. Morgan Kauffmann.
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Abstract

In this paper we propose a generalization of the noisy-or model to
multivalued parent variables. Albeit the proposed generalization is more
restrictive than previous proposals, it has several nice properties. In this
paper we suggest a method for learning this model and report results of
experiments on the Reuters text classification data.

1 Introduction

The conditional probability tables (CPTs) that are the basic building blocks of
Bayesian networks [9, 6] have, generally, an exponential size with respect to the
number of variables of the CPT. This has two unpleasant consequences. First,
during the elicitation of model parameters one needs to estimate an exponential
number of parameters. Second, in case of a high number of parent variables the
exact probabilistic inference may become intractable.

On the other hand real implementations of Bayesian networks (see e.g. [8])
often have a simple local structure of the CPTs. The noisy-or model [9] is
a popular model for describing relations between variables in one CPT of a
Bayesian network. Noisy-or is member of a family of models called models of
independence of causal influence [4] or canonical models [2]. The advantage of
these models is that the number of parameters required for their specification
is linear with respect to the number of variables in CPTs and that they allow
applications of efficient inference methods, see for example [3, 11].

In this paper we propose a generalization of the noisy-or model to multival-
ued parent variables. Our proposal differs from the noisy-max model [5] since
we keep the child variable binary no matter what the number of states of the
parent variables are. Also we have only one parameter for each parent no matter

∗This work was supported by the Czech Science Foundation through the project 13-20012S.
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the number of states of the parent variables. Our generalization is also different
than the generalization of the noisy-or model proposed by Srinivas [12] since in
his model the inhibitor probabilities cannot depend on the state of the parent
variables if the state differs from the state of the child. We find this to be a
quite restrictive requirement for some applications.

We will show that our proposal is closely connected with the Poisson Re-
gression of Generalized Linear Models [7]. Due to this connection we can use
methods from Poisson Regression for learning parameters of the generalized
noisy-or model from data. In the paper we present results of numerical exper-
iments on the well-known Reuters text classification data. We use this dataset
to compare the performance of our multinomial generalization of noisy-or with
the standard noisy-or.

2 Multinomial noisy-or

In this section we propose a generalization of noisy-or for multivalued parent
variables. Let Y be a binary variable taking states y ∈ {0, 1} andXi, i = 1, . . . , n
be multivalued discrete variables taking states xi ∈ {0, 1, . . . ,mi}, mi ∈ N+.
The local structure of both the standard (see, e.g., [2]) and the multinomial
generalization of the noisy-or can be made explicit as it is shown in Figure 1.

X ′
n. . .X ′

2X ′
1

Y

X1 X2 . . . Xn

Figure 1: Noisy-or model with the explicit deterministic (OR) part.

The conditional probability table P (Y |X1, . . . , Xn) is defined using CPTs
P (X ′

i|Xi) as

P (X ′
i = 0|Xi = xi) = (pi)

xi (1)

P (X ′
i = 1|Xi = xi) = 1− (pi)

xi , (2)

where pi ∈ [0, 1] is the parameter that defines the probability that the positive
value xi of variable Xi is inhibited. In the formula, we use parenthesis to empha-
size that xi is an exponent, not an upper index of pi. The CPT P (Y |X ′

1, . . . , X
′
n)

is deterministic and represents the logical OR function.
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Figure 2: The dependence of P (X ′ = 0|X = x) on p and x.

Remark. Note that the higher is the value xi of Xi the lower the probability of
X ′

i = 0, which is a desirable property in many applications.

The conditional probability table P (Y |X1, . . . , Xn) is then defined as

P (Y = 0|X1 = x1, . . . , Xn = xn) =

n∏

i=1

P (X ′
i = 0|Xi = xi)

=

n∏

i=1

(pi)
xi (3)

P (Y = 1|X1 = x1, . . . , Xn = xn) = 1−
n∏

i=1

(pi)
xi . (4)

Remark. Note that if mi = 1, i.e. the values xi of Xi are either 0 or 1, then we
get the classical noisy-or model.

In Figure 2 dependence of the inhibitory probability P (X ′ = 0|X = x) on
the value x of a variable X is depicted for different values of the parameter p.

It is important to note that contrary to the definition of causal noisy-max [2,
Section 4.1.6] we have only one parameter pi for each parent Xi of Y no mat-
ter what is the number of states of Xi. This implies that our model is more
restricted. But, on the other hand, the suggested simple parametrization guar-
antees ordinality, which is in many application a desirable property (as it is also
discussed in [2]). Also, since we estimate or elicite (from domain experts) fewer
parameters, the estimates are more reliable.
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3 Correspondence to Poisson Regression

Next we will show the correspondence of the multionomial noisy-or to the Pois-
son Regression of Generalized Linear Models [7].

By taking the logarithm of both sides of equation (3) we get

logP (Y = 0|X1 = x1, . . . , Xn = xn) =

n∑

i=1

xi · log pi .

Define a new parameter ri = log pi. Note that ri ∈ (−∞, 0]. Then we get

logP (Y = 0|X1 = x1, . . . , Xn = xn) =

n∑

i=1

xi · ri .

which is the formula of the Poisson regression of the binary variable 1 − Y .
Please, note that the expected value E(1 − Y |x1, . . . , xn) = P (Y = 0|X1 =
x1, . . . , Xn = xn). Therefore

logE((1− Y )|x1, . . . , xn) =

n∑

i=1

xi · ri .

This correspondence allows us to apply standard maximum likelihood esti-
mation methods for Poisson regression models to learning multinomial noisy-or.
A method typically used to learn the generalized linear models is the iteratively
reweighted least squares method [7].

When using a real data that might be modified by a noise or might be gen-
erated from a different model it can happen that for some of the ri, i = 1, . . . , n
parameters we learn positive values. This has a quite natural interpretation in
the multinomial noisy-or model. It means that higher values of Xi imply higher
inhibitory probability. Therefore we decided to treat positive values of ri pa-
rameters by relabeling the values of Xi from xi = 0, 1, . . . ,mi to mi − xi in the
multinomial noisy-or model. In this way the generalized noisy-or is now capable
to treat not only positive (presence of Xi increases probability of Y = 1) but
also negative influences (presence of Xi decreases probability of Y = 1).

4 Experiments

In this section we describe experiments we performed with the well known
Reuters-21578 collection (Distribution 1.0) of text documents. The text docu-
ments from this dataset appeared on the Reuters newswire in 1987 and were
manually classified by personnel from Reuters Ltd. and Carnegie Group, Inc.
to several classes according to their topic. In the test we used the split of doc-
uments to training and testing sets according to Apté et al. [1]. We performed
experiments with preprocessed data for eight largest classes1.

1The preprocessed dataset is available at http://web.ist.utl.pt/acardoso/datasets/.
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In the experiments we compare the standard noisy-or classifier [13] and our
generalized multinomial noisy-or. Both models were learned using the itera-
tively reweighted least squares method [7] implemented in R – a language and
environment for statistical computing [10]. We performed experiments with two
versions of both classifiers:

(a) features Xi with both a positive (+) or a negative influence (-) on prob-
ability of Y = 1 were allowed and treated as it was described in previous
section,

(b) features Xi with a negative influence (-) on probability of Y = 1 were
omitted.

Table 1: Comparisons of the accuracy of the noisy-or and its multinomial gen-
eralization. The best achieved accuracy is printed boldface and framed.

# test binomial binomial multinomial multinomial
Class documents (+ and -) (only +) (+ and -) (only +)

earn 1083 95.61 95.02 94.29 94.66

acq 696 94.20 91.78 92.01 91.87

crude 121 97.58 97.58 96.12 96.12

money-fx 87 96.67 96.67 96.30 96.44

interest 81 96.67 96.67 97.03 97.03

trade 75 97.44 97.44 98.13 98.13

ship 36 98.77 98.77 99.13 99.13

grain 10 99.91 99.91 99.86 99.86
total 2189

The results of experiments are summarized in Table 1. The accuracy is
reported using the percentage scale, it is the relative proportion of correctly
classified documents either as belonging to the given class or not. From Ta-
ble 1 we can see that standard noisy-or performs better for larger models, while
multinomial noisy-or is better at smaller models. The model for the class grain
is very small, it has one feature only and also the difference between the models’
accuracy is very small – it is 0.046, which corresponds to one test case only. In
Table 2 we provide the number of selected features for models from Table 1.

We decided to include into the models all features that were not rejected
as irrelevant at the significance level 0.1. In the experiments, we observed that
the classification accuracy could be slightly improved if the significance was
increased to 0.3, this would also slightly improve the AIC criteria2 However,
since the gain was not large we decide to prefer simpler models. Also, it has

2The AIC criteria takes into account both the log-likelihood and the number of parameters
of the learned model. The lower the AIC the better the model.
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Table 2: Comparisons of the number of selected features for the noisy-or and
its multinomial generalization.

# test binomial binomial multinomial multinomial
Class documents (+ and -) (only +) (+ and -) (only +)
earn 1083 17 14 13 12
acq 696 28 20 23 20
crude 121 4 4 3 3
money-fx 87 4 4 4 3
interest 81 3 3 2 2
trade 75 5 6 4 4
ship 36 2 2 3 3
grain 10 1 1 1 1
total 2189

a very limited influence on the two tested models’ preference, which is of our
major interest in this paper. However, it might be topic for a future research to
apply exhaustive feature selection methods that would find optimal models for
the families of our interest.

5 An example

In this section we use the class ship to illustrate the benefits of treating the
features as multinomial. In the first example we present the standard noisy-or
model and in the second the multinomial noisy-or model. Both models were
learned by the iteratively reweighted least squares method [7] and contain only
significant features for the significance level 0.1. The accuracy of the noisy-
or model was 98.77%, while the multinomial noisy-or model achieved accuracy
99.13%. Even if more features are included in the standard noisy-or model the
accuracy remains lower than the accuracy of the multinomial noisy-or model.

Example 1 (The noisy-or model for the ship class). In Figure 3 the structure
of the noisy-or model for the ship class is presented (in the examples we do
not make the deterministic part explicit). The variables are all binary, taking
values 0 or 1. The leaky cause has a fixed value 1. The conditional probability
P (class.ship = 0|chip = s, vessel = v) is defined as

P (class.ship = 0|ship = s, vessel = v) = (p1)s · (p2)v · p0 ,

where s ∈ {0, 1} is the state of feature ship and v ∈ {0, 1} is the state of feature
vessel. The values of parameters p1, p2 were estimated to be

p1 = exp(r1) = exp(−0.773407)
.
= 0.461438

p2 = exp(r2) = exp(−1.980023)
.
= 0.138066
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leaky causeship vessel

class.ship

Figure 3: Noisy-or model for the ship class.

and the leaky parameter p0 = exp(r0) was estimated to be

p0 = exp(r0) = exp(−0.005252)
.
= 0.994762 .

This model has accuracy 98.77%.

Example 2 (The multinomial noisy-or model for the ship class). In Figure 4
the structure of the multinomial noisy-or model for the ship class is presented.
The variable ship takes values from the set {0, 1, . . . , 9}, variables vessel and

ship vessel

class.ship

port leaky cause

Figure 4: Noisy-or model for the ship class.

port take values from the set {0, 1, . . . , 5}. The leaky cause has fixed state 1.
The conditional probability P (Class.ship = 0|Ship = s, V essel = v, Port) is
defined as

P (Class.ship = 0|Ship = s, V essel = v) = (p1)s · (p2)v · (p3)p · p0 ,

where s ∈ {0, 1, . . . , 9} is the state of feature ship, v ∈ {0, 1, . . . , 5} is the state
of feature vessel, and p ∈ {0, 1, . . . , 5} is the state of feature port. The values
of parameters p1, p2, p3 were estimated to be

p1 = exp(r1) = exp(−0.467276)
.
= 0.626707

p2 = exp(r2) = exp(−1.361929)
.
= 0.256166

p3 = exp(r3) = exp(−0.500009)
.
= 0.606525

and the leaky parameter p0 = exp(r0) was estimated to be

p0 = exp(r0) = exp(−0.001273)
.
= 0.998728 .
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This model has accuracy 99.13%, which is higher than the accuracy of noisy-or
from Example 1.

6 Conclusions

In this paper we proposed a generalization of the popular noisy-or model to mul-
tivalued explanatory variables. We showed the correspondence of this model to
the Poisson family of generalized linear models and applied iteratively reweighted
least squares method to learning of these models. In the experiments with the
Reuters text collection the standard noisy-or performed better for larger models,
while the multinomial noisy-or was better for smaller models.

Acknowledgments

I am grateful to Remco Bouckaert from The University of Auckland, New
Zealand for his suggestion to consider generalizations of noisy-or classifier [13]
to multinomial variables.

References
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Abstract

Fuzzy relational composition has been extensively studied by many
authors. Especially, we would like to highlight initial studies of the fuzzy
relational compositions motivated by their applications to medical diag-
nosis by W. Bandler and L.J. Kohout. In this investigation, we provide
a brief survey of the main pilots of the fuzzy relational compositions and
repeat the medical diagnosis motivation. We revisit these types of com-
positions and demonstrate a big gap between sup-T compositions and
Bandler-Kohout inf-R compositions (also called subproduct, superprod-
uct and square product). We show, that the gap is caused by the use of the
classical (existential and universal) quantifiers. Therefore, we suggest an
implementation of generalized intermediate quantifiers and demonstrate
their influence on filling the gap with a brief prospect on the potential in
applications. This paper is an introductory study that should demonstrate
the needs and motivate further research in this area.

1 Introduction

Fuzzy relational composition are widely used in many areas of fuzzy mathemat-
ics, including the formal constructions of fuzzy inference systems [1, 2, 3, 4] ,
medical diagnosis [5] or architectures for information processing and protection
of IT systems [6]. Since late 70’s and early 80’s when W. Bandler and L.J. Ko-
hout studied classical relational compositions and extended the concept in order
to define and deal with fuzzy relational compositions, these area became deeply
elaborated by numerous researchers. Let us recall mainly R. Bělohlávek’s book
[7], an article by B. De Baets and E.E. Kerre [8] and finally an exhaustive inves-
tigation in the so called Fuzzy Class Theory [9] by L. Běhounek and M. Daňková
[10].

As one may find on the very early articles [5, 11], the fuzzy relational compo-
sitions came to live as very natural generalization of well motivated compositions
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of classical relations. For example, the basic sup-T compositions is nothing else
but a generalization of the classical composition of two classical binary relations.
It is sufficient to consider binary fuzzy relations and to deal with the operations
that serve as interpretations of fuzzy connectives, which involves the t-norm
T in the formula that gave rise to the notion “sup-T composition”. However,
what remained untouched and up to the best knowledge of the authors, never
generalized so far, is the nature of the quantifiers that are used in the definitions
of the compositions. Particularly, sup-T compositions that use the operation of
supremum, implicitly employ the existential quantifier while inf-R compositions
that use the operation of infimum, implicitly employ the universal quantifier.
The fact that there is nothing in between the option of the existential quantifier
where just one element is enough to result the truth and the other option of the
universal quantifier where all elements have to fulfill a given formula in order to
result the truth, may be very limiting in distinct applications. Therefore, the
introduction of fuzzy relational compositions based on generalized quantifiers,
such as ’Most’ or ’Many’, is a well motivated natural step that is, up to our
best knowledge, firstly elaborated in this paper.

2 Relational compositions and fuzzy relational
compositions

2.1 Circlet composition

Let us consider three non-empty finite universes X,Y, Z of elements. Following
the work of W. Bandler and L.J. Kohout [5], for the sake of illustrative nature,
we can assume that X is a finite set of patients, Y is a finite set of symptoms
and Z is a finite set of diseases.

Let us be given two binary relations R ⊆ X×Y and S ⊆ Y ×Z, i.e., if a pair
(x, y) ∈ X ×Y belongs to relation R then it means that patient x has symptom
y and similarly, if a pair (y, z) ∈ Y × Z belongs to relation S then it means
that symptom y belongs to disease z. Both relations are usually at disposal
since R can be easily obtained by asking patients or by measuring symptoms
(body temperature, cholesterol, blood pressure etc.) and S constitutes an expert
medical knowledge that is at disposal e.g. in literature. The usual diagnosis
task of a physician is from the mathematical point of view nothing else but a
composition of these two relation in order to obtain a relation between patients
and diseases. In order words, to state what are the potential diseases of a
given patient. Obviously, formally, a similar job may be done by a relational
composition using e.g. the standard (also “circlet” [6]) one which gives a binary
relation R ◦ S on X × Z:

R ⊆ X × Y
S ⊆ Y × Z

R ◦ S ⊆ X × Z.
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Relation R ◦ S ⊆ X × Z is given as follows

R ◦ S = {(x, z) ∈ X × Z | ∃ y ∈ Y : (x, y) ∈ R & (y, z) ∈ S}. (1)

Using the fact that the existential quantifier may be interpreted by the oper-
ation of supremum, formula (1) may be rewritten into the following functional
form:

χ(R◦S)(x, z) =
∨

y∈Y
(χR(x, y) ∧ χS(y, z)) (2)

where χR, χS and χ(R◦S) denote characteristic functions of relations R,S and
R ◦ S respectively, and symbol ∧ denotes the minimum.

The relation R ◦ S then expresses a sort of suspicion of a disease for a
particular patient. It is a basic relation – for each patient it is sufficient to
have only a single symptom related to a particular disease in order to detect
the suspicion. Thus, a patient having a very general symptom related to many
diseases is immediately suspicious of having all these diseases.

2.2 Triangle and square compositions

Obviously, some sort of more accurate specification or strengthening the initial
suspicion is desirable. This may be done by further composition suggested in [5].
Particularly, we talk about two triangle and one square compositions that are
denoted by symbols C,B and �, respectively. All of the mentioned compositions
are defined on the same universes, i.e. similarly to the circlet compositions:

R ⊆ X × Y
S ⊆ Y × Z

R@S ⊆ X × Z

where @ ∈ {C,B,�}.
The first triangle compositions, also called Bandler-Kohout subproduct (abb.

BK-subproduct), defines the relation RC S ⊆ X × Z as follows

RC S = {(x, z) ∈ X × Z | ∀ y ∈ Y : (x, y) ∈ R⇒ (y, z) ∈ S}. (3)

In other words, the BK subproduct is defined as a relation of patients and
diseases such that, for all symptoms that a given patient has it holds, that they
belong to the given diseases that is in a relation with the patient. Note, that the
patient does not have to have all of the symptoms and that he or she may have
symptoms belonging also to other diseases however, only in case the symptoms
simultaneously belong to the given disease.

Using the fact that the universal quantifier may be interpreted by the op-
eration of infimum, formula (3) may be rewritten into the following functional
form:

χ(RCS)(x, z) =
∧

y∈Y
(χR(x, y)⇒ χS(y, z)) (4)

where symbol ⇒ expresses the binary operation of the classical implication.
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A sort of inverse strengthening of the initial suspicion to the BK subproduct
is provided by the second triangle composition called Bandler-Kohout super-
product (abb. BK-superproduct) which defines the relation R B S ⊆ X × Z as
follows

RB S = {(x, z) ∈ X × Z | ∀ y ∈ Y : (x, y) ∈ R⇐ (y, z) ∈ S}. (5)

In other words, the BK superproduct is defined as a relation of patients and
diseases such that, for all symptoms that belong to a given disease it holds,
that the given patient that is in a relation with the disease necessarily must
have them. Note, that the patient may have symptoms belonging also to other
diseases however, he or she cannot miss any of the symptoms belonging to the
given disease.

Similarly to the previous case, we may rewrite formula (5) into the following
functional form:

χ(RBS)(x, z) =
∧

y∈Y
(χR(x, y)⇐ χS(y, z)) . (6)

Finally, we may recall the square compositions, also called Bandler-Kohout
square product (abb. BK square product), which defines the relation R�S ⊆
X × Z as follows

R�S = {(x, z) ∈ X × Z | ∀ y ∈ Y : (x, y) ∈ R⇔ (y, z) ∈ S} (7)

and may be easily rewritten to the following functional form:

χ(R�S)(x, z) =
∧

y∈Y
(χR(x, y)⇔ χS(y, z)) . (8)

One may see, that the square compositions models an ideal example when
a given patient has all the symptoms of a given disease and all the symptoms
of the patient belong to the given disease, i.e., he or she has no symptoms that
we could not connect to the disease.

2.3 Compositions of fuzzy relations

Since usual symptoms such as high temperature, increased cholesterol or very
high blood pressure are basically vaguely specified and imprecisely measured (all
these values oscillate during a day) and very often some symptoms do not clearly
or necessarily belong to a given diseases however, they might belong to it under
some assumptions or conditions, the extension of the compositions for fuzzy
relations R ⊂∼ X × Y and S ⊂∼ Y × Z was highly desirable. Obviously, since

such a extension causes that we deal with fuzzy relations which contain pairs of
elements up to some degrees from the interval [0, 1], we have to take into account
appropriate operations. Basically, it is appropriate to deal with a residuated
lattice as the underlying algebraic structure [12] and the used operations will
be left-continuous t-norms [13] and their residual (bi)implications [14].

In this article, we only briefly recall the basic definitions of the fuzzy rela-
tional compositions as introduced by W. Bandler and L.J. Kohout.
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Definition 1 Let X,Y, Z be non-empty universes, let R ⊂∼ X × Y , S ⊂∼ Y × Z
and let ∗ be a left-continuous t-norm. Then the ◦ (sup-∗) composition of fuzzy
relations R and S is a fuzzy relation on X × Z defined as follows:

(R ◦ S)(x, z) =
∨

y∈Y
(R(x, y) ∗ S(y, z))

for all x ∈ X and z ∈ Z.

Analogously, we can define generalized Bandler-Kohout products.

Definition 2 Let X,Y, Z be non-empty universes, let R ⊂∼ X × Y , S ⊂∼ Y × Z
and let→ be a residual implication. Then the C,B,� (inf-→, inf-← and inf-↔)
compositions of fuzzy relations R and S are fuzzy relations on X × Z defined
as follows:

(RC S)(x, z) =
∧

y∈Y
(R(x, y)→ S(y, z)) ,

(RB S)(x, z) =
∧

y∈Y
(R(x, y)← S(y, z)) ,

(R�S)(x, z) =
∧

y∈Y
(R(x, y)↔ S(y, z)) ,

for all x ∈ X and z ∈ Z.

Since ∗ is a t-norm, often denoted by the capital T, the sup-∗ composition
is also called the sup-T composition. Similarly, the Bandler-Kohout products
since being constructed with help of the infimum and the residual operation,
are called inf-R compositions.

Remark 1 Note, that for x ∈ X such that R(x, y) = 0 for all y ∈ Y , the
composed relation (RC S)(x, z) = 1 for any z ∈ Z. More illustratively, if there
is a patient with no symptoms, it is trivially true that for any given disease,
all his symptoms are related to the given disease. Similarly, for z ∈ Z such
that S(y, z) = 0 for all y ∈ Y , the composed relation (R B S)(x, z) = 1 for any
x ∈ X. On the other hand, in such situations (R ◦ S)(x, z) = 0 so, the inf-R
compositions may hardly be viewed as strengthening of a suspicion determined by
the sup-T composition if no suspicion was determined. De Baets and Kerre in
[8] approached this problem by a redefinition of the original inf-R compositions
where an existence of joining element y ∈ Y (symptom) is assumed. Although
we are aware of this solution that is both, mathematically elegant and practically
useful in distinct applications, in this preliminary investigation we stay stuck to
the original definitions and we leave the investigation of the later modification
for further studies.

As we may see from Definitions 1-2, the generalizations focus on the relations
(newly fuzzy relations) and the internal operations only. However, concerning
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the outer operations, they remain unchanged. Particularly, the definitions still
deal with the supremum and the infimum and thus, inherently use the existential
and universal quantifiers, respectively. The subsequent example shows the gap
above mentioned between such compositions and its potential drawback for
applications.

Example 1 Let us consider just a simple artificial example for demonstrative
and motivation purposes. Let us consider ∗ and → to be the  Lukasiewicz oper-
ations and the following fuzzy relations R and S:

R y1 y2 y3 y4
x1 0.9 1 0.8 0
x2 0 0.9 0.8 0.1
x3 0 0.8 0.9 0
x4 0 0 1 0.9

S z1 z2 z3 z4 z5
y1 1 1 0.1 0.9 0
y2 0.9 0.2 0.9 0 1
y3 0 1 0 1 1
y4 1 0 0.7 0.1 0.9

If we compute the standard fuzzy relational compositions, e.g., the sup-T com-
position and the Bandler-Kohout square products:

R◦S z1 z2 z3 z4 z5
x1 0.9 0.9 0.9 0.8 1
x2 0.8 0.8 0.8 0.8 0.9
x3 0.7 0.9 0.7 0.9 0.9
x4 0.9 1 0.6 1 1

R�S z1 z2 z3 z4 z5
x1 0 0.2 0.2 0 0.1
x2 0 0 0.2 0.1 0.2
x3 0 0 0.1 0.1 0.1
x4 0 0 0 0.1 0

we will see, that while all patients are suspicious of having all diseases in a high
degree when using ◦, if we want to strengthen the suspicion with help of �, no
patients is suspicious of having any disease in a high degree anymore.

3 Generalized quantifiers

3.1 Generalized quantifiers based on fuzzy measures

In the above sections, we have recalled relational compositions and fuzzy rela-
tional compositions. We also showed their drawback demonstrated why a use
of generalized intermediate quantifiers [15] is highly desirable. Particularly, for
our goal, the so called monadic quantifiers of the type 〈1〉 determined by fuzzy
measures [16] will be applied. First of all, let us recall some basic definitions.

Definition 3 Let U = {u1, . . . , un} be a finite universe, P(U) denote the power
set of U and µ : P(U)→ [0, 1] be a normalized fuzzy measure, i.e., a monotone
mapping with µ(∅) = 0 and µ(U) = 1. We say that the fuzzy measure µ is
invariant with respect to cardinality, if the following condition holds:

∀A,B ∈ P(U) : |A| = |B| ⇒ µ(A) = µ(B)

where | · | denotes the cardinality of a set.
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Example 2 The measure called relative cardinality and given by

µrc(A) =
|A|
|U | (9)

is invariant w.r.t. cardinality. If f : [0, 1]→ [0, 1] is a non-decreasing mapping
with f(0) = 0 and f(1) = 1 then µ defined as µ(A) = f(µrc(A)) is again a fuzzy
measure that is invariant w.r.t. cardinality.

Note, that all the intensions of linguistic evaluative expressions [17] of the
type Big and modified by arbitrary linguistic hedge (e.g. More or less, Very,

Roughly, Extremely etc.) are fuzzy sets on [0, 1] that fulfill the boundary con-
ditions and thus, may be used in order to modify the original relative cardinality.

In the sequel, we will deal only with such fuzzy measures that are created
by a modification of the relative cardinality by an appropriate fuzzy set (cf.
Definition 3.7 in [16])

Definition 4 Let U be non-empty finite universe and µ be a fuzzy measure on
U that is invariant w.r.t. cardinality. A mapping Q : F(U)→ [0, 1] defined by

Q(C) =
∨

D∈P(U)r{∅}

(( ∧

u∈D
C(u)

)
∗ µ(D)

)
, C ∈ F(U) (10)

where ∗ is a left-continuous t-norm, is called fuzzy quantifier determined by fuzzy
measure µ.

Example 3 Let us assume that the fuzzy measures µ defined as follows

µ∀(B) =

{
1 B ≡ U
0 otherwise,

µ∃(B) =

{
0 B ≡ ∅
1 otherwise.

(11)

Then the derived quantifiers Q∀ and Q∃ are exactly the classical universal and
existential quantifiers, respectively. Note that similarly one may define fuzzy
quantifiers also for other algebras of sets than power sets considered here.

One can immediately see, that formula (10) is not very appropriate from
the computational point of view since it requires calculation over all sets from
P(U) r {∅}. However, we may use the property of fuzzy measure being invari-
ant w.r.t. cardinality and simply show that the fuzzy quantifier may be very
efficiently computed.

Theorem 1 Let Q be a fuzzy quantifier on U determined by a fuzzy measure µ
that is invariant w.r.t. cardinality. Then

Q(C) =

n∨

i=1

C(uπ(i)) ∗ µ({u1, . . . , ui}), C ∈ F(U) (12)

where π is a permutation on U such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥ C(uπ(n)).
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Proof: Let C be an arbitrary fuzzy set. It is easy to see that, for any i = 1, . . . , n
and D ∈ P(U) with |D| = i, it holds

C(uπ(i)) =
∧

u∈{uπ(1),...,uπ(i)}
C(u) ≥

∧

u∈D
C(u).

The statement immediately follows from the invariance of µ w.r.t. cardinality.
�

In other words, if we again apply the fuzzy measure that is constructed from
the relative cardinality by some modifying fuzzy set f , formula (12) turns into
the following equality:

Qf (C) =

n∨

i=1

C(uπ(i)) ∗ f(i/n) (13)

which is easy to calculate.

3.2 Fuzzy relational compositions based on generalized
quantifiers

In this part of the text, we directly apply the above introduced theory of gen-
eralized quantifiers to our problem of fuzzy relational compositions.

Let us recall, e.g., the definition of the Bandler-Kohout subproduct of two
classical relations R and S given by formula (3)

RC S = {(x, z) ∈ X × Z | ∀ y ∈ Y : (x, y) ∈ R⇒ (y, z) ∈ S}.

Using the generalized quantifier Q defined on Y , formula (3) modifies into

RCQ S = {(x, z) ∈ X × Z | Q y ∈ Y : (x, y) ∈ R⇒ (y, z) ∈ S}. (14)

For example, if Q represents the quantifier ’Most’, the formula can be easily
read as a set of pairs of patients and diseases such that for most of the symptoms
that a given patient has it holds, that they belong to the given disease, which
is very natural.

Transformation of the procedure leading from (3) to (14) in the case of fuzzy
relational compositions is then straightforward and realized in the following
definition.

Definition 5 Let X,Y, Z be non-empty finite universes, let R ⊂∼ X × Y , S ⊂∼
Y ×Z, let ∗ be a left-continuous t-norm and→ be its residual implication. Let µ
be a fuzzy measure on Y that is invariant w.r.t. cardinality and let Q be a fuzzy
quantifier on Y determined by the fuzzy measure µ. Then the ◦Q,CQ,BQ,�Q
compositions of fuzzy relations R and S are fuzzy relations on X × Z defined
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as follows:

(R ◦Q S)(x, z) =
∨

D∈P(Y )r{∅}




∧

y∈D
R(x, y) ∗ S(y, z)


 ∗ µ(D)


 ,

(RCQ S)(x, z) =
∨

D∈P(Y )r{∅}




∧

y∈D
R(x, y)→ S(y, z)


 ∗ µ(D)


 ,

(RBQ S)(x, z) =
∨

D∈P(Y )r{∅}




∧

y∈D
R(x, y)← S(y, z)


 ∗ µ(D)


 ,

(R�Q S)(x, z) =
∨

D∈P(Y )r{∅}




∧

y∈D
R(x, y)↔ S(y, z)


 ∗ µ(D)


 ,

for all x ∈ X and z ∈ Z.

Though the definition is general and enables to use any quantifier Q, ob-
viously, for application purposes, when dealing with the inf-R compositions
CQ,BQ,�Q quantifiers weakening the universal quantifier such as ’Most’ or
’Many’ are expected to be applied. These quantifiers may be applied for exam-
ple using the fuzzy sets modeling the meaning of evaluative linguistic expression
Very Big and not Small, see [15]. Similarly, in the case of sup-T composition
◦Q, we should apply quantifiers that slightly strengthen the expectations from
the existential quantifiers, such as ’A Few’1 that may be modeled by a fuzzy
sets representing the meaning of the expression not Very Small.

Corollary 1 Let µ be a fuzzy measure that is constructed from the relative
cardinality by the modification using function f . Then for all x ∈ X and z ∈ Z:

(R ◦Q S)(x, z) =

n∨

i=1

((
R(x, yπ(i)) ∗ S(yπ(i), z)

)
∗ f(i/n)

)
,

(RCQ S)(x, z) =

n∨

i=1

((
R(x, yπ(i))→ S(yπ(i), z)

)
∗ f(i/n)

)
,

(RBQ S)(x, z) =

n∨

i=1

((
R(x, yπ(i))← S(yπ(i), z)

)
∗ f(i/n)

)
,

(R�Q S)(x, z) =

n∨

i=1

((
R(x, yπ(i))↔ S(yπ(i), z)

)
∗ f(i/n)

)
,

where π is a permutation such that (putting ~ ∈ {∗,→,←,↔})

R(x, yπ(i))~ S(yπ(i), z) ≥ R(x, yπ(i+1))~ S(yπ(i+1), z), i = 1, . . . , n− 1.

1Note the difference between ’A Few’ and ’Few’. Quantifier ’Few’ implicitly means
something like ’not many’ and thus, the application of a non-decreasing function f is impossible
and the quantifier requires a different construction, see [15].
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Indeed, the original compositions are special cases of the newly defined ones.
Using the fuzzy measure µ∀ given by (11), one may easily check that R C S ≡
R C∀ S and similarly that R B S ≡ R B∀ S, R�S ≡ R�∀ S. Indeed, since
f(i/n) = 0 for all i < n and f(1) = 1 then

(RC∀ S)(x, z) =
(
R(x, yπ(n))→ S(yπ(n), z)

)
∗ f(n/n)

which due to the fact that

R(x, yπ(n))→ S(yπ(n), z) =

n∧

i=1

(R(x, yi)→ S(yi, z))

proves RC S ≡ RC∀ S. The other equalities may be proved analogously.

Example 4 Let us consider fuzzy relations from Example 1 and assume again
the  Lukasiewicz operations. Furthermore, let us consider the fuzzy set modeling
the meaning of the linguistic expression Roughly Big which enables us to con-
struct a generalized quantifier ’Majority’. In a standard context, this fuzzy set
takes values RoBi(1/4) = 0,RoBi(2/4) = 0,RoBi(3/4) = 0.95 and RoBi(1) = 1.
Then the newly suggested fuzzy relational composition �Q, that is built using the
above mentioned fuzzy set, gives the following results:

R�Q S z1 z2 z3 z4 z5
x1 0.15 0.75 0.2 0.75 0.1
x2 0.05 0.25 0.35 0.1 0.75
x3 0 0.35 0.25 0.15 0.75
x4 0 0.05 0.05 0.15 0.95

As we may see, composition �Q strengthened the original suspicion given by ◦
but no so strictly as by � which would require to have ’All’ symptoms of a given
disease and to have ’All’ symptoms related a given disease. Composition �Q

requires only ’Majority’ of the symptoms to have such properties (connections)
and thus, better captures the natural vagueness and fuzziness of the real-world
situation which leads to a strengthen suspicion of diseases z5 (in the case of
patients x2, x3, x4) and of diseases z2, z4 (in the case of patient x1).

4 Properties

In the sections above, we have recalled classical and fuzzy relational composi-
tion, we have demonstrated that there is a big gap between sup-T and inf-R
compositions that motivated us to involve generalized quantifiers, we have re-
called brief facts about monadic quantifiers of type 〈1〉 and used them in a
construction of fuzzy relational compositions based on generalized quantifiers.
Many appropriate properties were proved for the original classical as well as
fuzzy relational compositions. In this section, we face the question whether
the same or similar properties may be valid also for the compositions based on
generalized quantifiers. As we will show, the answer is positive.
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Theorem 2 Let X,Y, Z, U are finite universes and let R1, R2 ⊂∼ X×Y , S1, S2 ⊂∼
Y × Z and T ⊂∼ Z × U . Furthermore, let ∪,∩ denote the Gödel union and in-

tersection, respectively. Then

1. R ◦Q (S ◦Q T ) = (R ◦Q S) ◦Q T

2. R�Q S ≤ (RCQ S) ∩ (RBQ S)

3. R1 ≤ R2 ⇒ (R1◦QS) ⊆ (R2◦QS) and S1 ≤ S2 ⇒ (R◦QS1) ⊆ (R◦QS2)

4. R1 ≤ R2 ⇒ (R1 CQ S) ⊇ (R2 CQ S) and (R1 BQ S) ⊆ (R2 BQ S)

5. (R1 ∪R2) ◦Q S = (R1 ◦Q S) ∪ (R2 ◦Q S)

6. (R1 ∩R2)CQ S = (R1 CQ S) ∪ (R2 CQ S)

7. (R1 ∪R2)BQ S = (R1 BQ S) ∪ (R2 BQ S)

8. (R1 ∩R2) ◦Q S ≤ (R1 ◦Q S) ∩ (R2 ◦Q S)

9. (R1 ∪R2)CQ S ≤ (R1 CQ S) ∩ (R2 CQ S)

10. (R1 ∩R2)BQ S ≤ (R1 BQ S) ∩ (R2 BQ S)

Sketch of the proof: All the properties are proved based on the properties of
left-continuous t-norms and their residual implications on a linearly order set
[0, 1], i.e., using

(a ∧ b) ∗ c = (a ∗ c) ∧ (b ∗ c), (a ∨ b) ∗ c =(a ∗ c) ∨ (b ∗ c),
(a ∧ b)→ c = (a→ c) ∨ (b→ c), (a ∨ b)→ c =(a→ c) ∧ (b→ c),

a→ (b ∧ c) = (a→ b) ∧ (a→ c), a→ (b ∨ c) =(a→ b) ∨ (a→ c),

(a↔ b) = (a→ b) ∧ (a← b),
∨

i

((ai ∗ b) ∧ (ai ∗ c)) ≤
∨

i

(ai ∗ b) ∧
∨

i

(ai ∗ c)

and the antitonicity and the isotonicity of → in its first and second argument,
respectively. Furthermore, the monotonicity properties 3.-4. are extensively
used in proving the latter properties. �

Remark 2 Obviously, items 5.-10. may be also read as follows:

12. R ◦Q (S1 ∪ S2) = (R ◦Q S1) ∪ (R ◦Q S2)

13. RBQ (S1 ∩ S2) = (RBQ S1) ∪ (RBQ S2)

14. RCQ (S1 ∪ S2) = (RCQ S1) ∪ (RCQ S2)

15. R ◦Q (S1 ∩ S2) ≤ (R ◦Q S1) ∩ (R ◦Q S2)

16. RBQ (S1 ∪ S2) ≤ (RBQ S1) ∩ (RBQ S2)

17. RCQ (S1 ∩ S2) ≤ (RCQ S1) ∩ (RCQ S2)
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5 Conclusions

We have shown, how crucial the gap between the sup-T and inf-R composi-
tions might be. Luckily, there is a deep theory of generalized quantifiers that
might be very helpful for such situations. Particularly, they allow us to define
fuzzy relational compositions with help of linguistically very natural quantifiers
such as ’A Few’, ’Many’, ’Majority’ or ’Most’. These quantifiers provide
us with a wider choice for such fuzzy relational compositions that may better
fit for each particular practical problem. Besides the fundamental definitions
and motivating examples, we have shown that many of the appreciated prop-
erties of the standard fuzzy relational compositions are preserved. This gives a
huge potential to employ the fuzzy relational compositions based on generalized
quantifiers in many other areas of application, such as inference systems, where
fuzzy relational compositions play a crucial role.

Acknowledgments This investigation was supported by the European Re-
gional Development Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070).
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[7] R. Bělohlávek (2002), Fuzzy relational systems: Foundations and principles.
Dordrecht, New York: Kluwer Academic, Plenum Press.

[8] B. De Baets and E. Kerre (1993), Fuzzy relational compositions, Fuzzy Sets
and Systems, 60, 109–120.

Fuzzy Relational Compositions Based on Generalized Intermediate Quantifiers

40



[9] L. Běhounek and P. Cintula (2005), Fuzzy class theory, Fuzzy Sets and Sys-
tems, 154, 34–55.
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Abstract

In this paper, we present methods using which information expressed
in natural language is automatically generated from a given set of time
series. The information consists in description of trend of the time series in
various time slots that is estimated using F1-transform. This description
is based on the theory of evaluative linguistic expressions.

1 Introduction

Fuzzy natural logic (FNL) is a group of mathematical theories that extend
mathematical fuzzy logic in narrow sense. Its goal is to develop a mathematical
model of the semantics of some parts of natural language and a model of special
human reasoning schemes that employ natural language but are independent on
a concrete one. The main constituents of FNL are:

• Theory of evaluative linguistic expressions. Example of such expressions
are small, very small, medium, large, etc.

• Theory of fuzzy/linguistic IF-THEN rules and logical inference from them.

• Theory of intermediate quantifiers that are linguistic expressions such as
most, almost all, many, a lot of, etc.

In this paper, we focus on the application enabling us to generate auto-
matically natural language comments to general tendency of time series in a
given time slot. The application is based on the theory of evaluative linguistic
expressions in combination with the technique of F-transform (see [1, 2]).

By a time series, we understand a discrete stochastic process (see [3, 4])

X : Q× Ω −→ R (1)
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where Q is a finite set Q ⊂ N whose elements are interpreted as time moments.

It follows from (1) that for each t ∈ Q the mapping X(t, ω), ω ∈ Ω is a
random variable. If we fix ω ∈ Ω then we obtain one realization of (1) and in
this case, we will write simply X(t).

Our basic assumption is that X(t, ω) can be decomposed into three compo-
nents, namely

X(t, ω) = TC (t) + S(t) +R(t, ω), t ∈ [a, b], ω ∈ Ω, (2)

where TC is a trend-cycle, S is a seasonal component and R is a random noise.
Both TC and S are usual (i.e. non-random) real or complex-valued functions
of a real variable.

2 Linguistic evaluation of the behavior of time
series

2.1 Estimation of trend using F1-transform

Important feature of the trend-cycle TC is its trend (tendency). We may dis-
tinguish it on the whole time series as well as in local time slots (for example,
quarter of year, production period, etc.). The course of the time series, how-
ever, can be largely volatile and so, it may be quite difficult to recognize its
trend. An objective tool using which the trend can be clearly recognized even
on the volatile time series can be thus valuable. Such a tool is the F1-transform
because of its ability to estimate the tangent.

Definition 1
Let f : [a, b] −→ R be a continuous function and A = {A0, . . . , An}, n ≥ 2 be a
fuzzy partition of [a, b]. The vector of linear functions

F1[f ] = (β0
1 + β1

1(x− c1), . . . , β0
n−1 + β1

n−1(x− cn−1)) (3)

is called the F 1-transform of f with respect to the fuzzy partition A, where

β0
k =

∫ ck+1

ck−1
f(x)Ak(x)dx

h
, (4)

β1
k =

∫ ck+1

ck−1
f(x)(x− xk)Ak(x)dx

∫ ck+1

ck−1
(x− ck)2Ak(x)dx

(5)

for every k = 1, . . . , n− 1.

The following theorem plays an important role in our application to time
series trend evaluation.
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Theorem 1
Let A = {A1, . . . , An−1} be an h-uniform partition of [a, b], let functions f and
Ak ∈ A, k = 1, . . . , n − 1, be four times continuously differentiable on [a, b].
Finally, let F1[f ] be the F 1-transform (3) of f . Then

β1
k = f ′(ck) +O(h), k = 1, . . . , n− 1. (6)

On the basis of the previous theory, may define trend T (Ak) of the time
series X in the area characterized by the fuzzy set Ak ∈ A by

T (Ak) = β1
k (7)

where β1
k is the coefficient (5). Hence, T (Ak) is a weighted average tangent of

the function X(t) over the area determined by the fuzzy set (basic function)
Ak ∈ A.

2.2 Evaluative linguistic expressions

The formal theory of the semantics of evaluative linguistic expressions was in
detail described in [5]. Essential concept in this theory is that of (linguistic)
context. For evaluative expressions, it is determined by a triple of real numbers
〈vL, vS , vR〉 where vL < vS < vR (∈ R). These numbers represent the smallest,
typically medium, and the largest thinkable values, respectively. The context is
thus a set

w = {x | vL ≤ x ≤ vR} (8)

together with three distinguished points DP(w) = 〈vL, vS , vR〉. By W we denote
the set of all contexts (8) and by EvExpr the set of all considered evaluative
expressions. Each evaluative expression Ev ∈ EvExpr is assigned the meaning
which is a function

Int(Ev) : W −→ F(R).

We will call this function intension of the evaluative expression Ev . It assigns
to each context w ∈ W a fuzzy set Extw(Ev) ⊂∼ w called extension of the

expression Ev in the context w ∈W .
We will distinguish abstract evaluative expressions, i.e. expressions such as

small, weak, very strong, etc., that alone do not talk about any specific objects
and evaluative linguistic predications such as “temperature is high, expenses are
extremely low, the building is quite ugly”, etc. In general, the latter have the
surface form

〈noun〉 is 〈simple evaluative expression〉 (9)

where
〈simple evaluative expression〉 := 〈hedge〉〈TE-adjective〉,

〈hedge〉 is a linguistic hedge (for example very, rather, extremely, more or less,
roughly, etc.) and 〈TE-adjective〉 is a trichotomous evaluative adjective (for
example small, medium, big, large, weak, good, etc.). The “is” takes here the
role of a copula assigning property to objects and is not treated as a genuine
verb.
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2.3 Linguistic evaluation of the trend of time series

The theory of evaluative expressions provides a special function of local percep-
tion

LPerc : w ×W −→ EvExpr . (10)

This function assigns to each value x ∈ w in each context w ∈W an evaluative
expression of the form (9). The function is constructed in such a way that
given a linguistic context w ∈ W and a value x ∈ w, the result of (10) is the
most plausible evaluative expression that characterizes x in the given context
w. Using (10), we will generate linguistic evaluation of the trend of time series.
First we must specify the context. We start with specification of what does
it mean “extreme increase (decrease)”. In practice, it can be determined as
the largest acceptable difference of time series values with respect to a given
(basic) time interval. Hence, mathematically we speak about the tangent. The
usual basic time interval is 12 months, 31 days, etc. depending on the kind
of the time series. Thus, the context is determined by the three distinguished
values vL, vS , vR of the tangent. The largest tangent vR is determined in the
way mentioned above while the smallest one is usually vL = 0. The typical
medium value vS is determined analogously as vR. The result is the context
wtg = 〈vL, vS , vR〉.

Now, we can linguistically characterize the trend T (Ak) in (7) with respect
to the context wtg, i.e. we will automatically generate evaluative linguistic
expressions using the function LPerc(T (Ak), wtg) of local perception (10): This
is justified by the fact that T (Ak) is an average tangent over an area covered
by the basic function Ak ∈ A.

Predications using which we linguistically evaluate time series trend have
specific form. The basic characteristic is sign of the trend. This is characterized
by a special word, namely “+” is expressed by the word increasing (or increase)
and “−” by decreasing (or decrease). This can further be completed by special
expressions characterizing its gradient. Moreover, the obtained expressions are
apparently subject to ordering that is similar to the natural ordering of the
“standard” evaluative expressions. We conclude that the general syntactic form
of expressions characterizing trend is either (a) or (b) specified below:

(a)

Trend is 〈gradient〉 (11)

where

〈gradient〉 := stagnating|〈hedge〉〈sign〉, (12)

〈sign〉 := increasing|decreasing (13)

and

〈hedge〉 := negligibly|slightly|somewhat|clearly|roughly|sharply|significantly.
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(b) In some cases, however, only the feature increase (decrease) of trend is
evaluated:

〈sign of trend〉 is 〈special hedge〉 (14)

where 〈sign of trend〉 := increase|decrease and

〈special hedge〉 := negligible|slight|small|clear|rough|large|fairly large|
quite large|significant|huge.

Note that, in fact, the increase (decrease) (of trend) is evaluated both in
(11) as well as in (14). The difference in their use depends on the syntactic
specificities but not on their semantics! Some cases, for example “trend is
slightly increasing” and “increase of trend is slight” are even synonymous.

This suggest the idea that the above special evaluative predications (11) and
(14) are semantically tantamount to the standard form

〈sign of trend〉 is B (15)

where B is an evaluative expression generated by the function (10). Therefore,
we can first generate the predications (15) linguistically characterizing the given
tangent and then replace them by (11) or (14) according to the following tables
Table 1 and Table 2:

Tantamount linguistic expressions
〈gradient〉 B
stagnating Ze, ± extremely small

negligibly 〈sign〉 significantly small
slightly 〈sign〉 very small

somewhat 〈sign〉 rather small
clearly 〈sign〉 medium, quite roughly small, very roughly small

roughly 〈sign〉 quite roughly big, very roughly big
sharply 〈sign〉 very big

significantly 〈sign〉 significantly big

Table 1: Case (a)

Demonstration of generated comments to the time series is depicted in Fig-
ure 1. One can see that its trend is by no means clear. Slot 3 (time 92-115) of
this time series is validation part, on which the quality of the forecast is tested
and the best one is chosen. Slot 4 (time 116-127) is testing part that is not
used for computation of the forecast but only for comparison of the forecast
with the real data. In Fig. 2 the same time series is analyzed and its forecast is
computed.

The linguistic context for the trend evaluation was set to wtg = 〈vL = 0, vS =
1200/12, vR = 3000/12〉 since the time series demonstrates clear periodicity of
T = 12 (this was obtained using periodogram — cf., e.g., [3]). The generated
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Tantamount linguistic expressions
〈special hedge〉 B

negligible significantly small
slight very small
small small
clear medium, quite roughly small, very roughly small

rough quite roughly big, very roughly big
fairly large roughly big, more or less big
quite large rather big

large big
sharp very big

significant significantly big
huge extremely big

Table 2: Case(b)

Figure 1: Demonstration of evaluation of trend of various parts of a real time se-
ries. Trend of the whole series is stagnating. Slot 1 (time 23-32): clear decrease,
Slot 2 (time 70-127): negligible decrease, Slot 3 (time 92-115): small increase,
Slot 4 (time 116-127): fairly large decrease.

evaluation of trend of the predicted values in the testing part is rough decrease
while evaluation of trend of the real data is fairly large decrease. Thus, instead
of presenting concrete predicted numbers, the manager might be satisfied with
the information that “rough decrease is expected”.

3 Discussion

In this paper, we presented a method based on combination of the F1-transform
and fuzzy natural logic using which we can generate linguistic comments to the
trend of the time series in arbitrary time slots. We believe that such comments
can be useful, for example, in situations when it is difficult to see the global
trend because the time series is too volatile.

In further research, we can apply other theories of fuzzy natural logic, for
example formal theory of intermediate quantifiers (see [6, 7]). Using this theory,
we can model the meaning of sentences, such as

“Most (many, few) analyzed time series stagnated recently but their
future trend is slightly increasing.”
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Figure 2: Analysis and forecast of the time series from Fig. 1. Slot 3 (time
92-115 — validation part) and Slot 4 (time 116-127 — testing part) contain
computed and predicted trend cycle, and also real and predicted values. The
generated comments in Slot 4 are: rough decrease for the predicted data and
fairly large decrease for the real data.

“Huge decrease of trend of almost all time series in the recent quarter
of the year.”

Moreover, we can also apply syllogistic reasoning with such expressions, for
example

Few analyzed time series are not from IT industry

Many analyzed time series are clearly raising
Few clearly raising time series are not from IT industry

It is important to realize that the latter is example of valid generalized Aristotle’s
syllogism which means that it is true in all situations (models).

Another possibility is to mine interesting information from the given set
of time series, summarize their properties and summarize also their possible
future development. Namely, we start with analysis and forecasting of all the
time series. Then we generate comments to interesting time slots, or we can
also determine time slots in which behavior of the time series is interesting for
us, for example, “in which period was the time series sharply increasing”, “how
long was the time series stagnating or decreasing before sharp increase”, etc.
Finally, we can summarize the results using intermediate quantifiers and derive
further properties on the basis of valid syllogisms.
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Abstract

In this paper, a novel fast approach is proposed to achieve image seg-
mentation in color image. This method helps to refine the foreground
regions and achieves the goal of robust color image segmentation throw
the following four steps. First, modified Karhunen-Loeve transform is per-
formed to reduce the redundant component, thus selecting the most im-
portant part of the color images. Second, a multi-threshold Otsu method
is carried out to select the best thresholds from image histogram. Thereby,
the conventional Otsu method has been extended from gray level to color
level. Third, improved Sobel edge detection is added to enhance the weight
of edge detail of the foreground image. Finally, a K-Means Clustering is
used to merge the over-segmented regions. Experimental results prove
that this method has a good performance even when the color image has
a complicated structure in the background.

Keywords: Image segmentation, Karhunen-Loeve transform, background
subtraction, Otsu method, K-means clustering

1 Introduction

Image segmentation is an important part in pattern recognition, computer vision
and computer graphics. The main target of image segmentation is to separate
an image into two or more parts, each part belongs to the same object or the
pixels of this part has similar characteristic. Up till now, many researchers
have been focusing on gray-level image segmentation. On the other hand, since
color pictures are much more complicated, studies on color image segmentation
are much less. Color image contains much more information and is a closer
description for the real world, so a robust segmentation with less computational
load is required for color image processing to meet the computer vision’s need.
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Figure 1: Processing flow of our image segmentation system

The purpose of this research is to develop a robust image segmentation
system in order to separate an image into proper number of parts and consume
less time. The system consists of three main modules.

First we use K-L theorem as a preprocessing in order to reduce the three
dimensional data (RGB) into only one dimension and keep the important infor-
mation of original color image as much as possible.

Second, we have built a relative robust Otsu-based segmentation system as
a rough segmentation, for example, to separate an image into about 50 parts.
There are three conditions in multi-threshold Otsu system. When we need to
separate an image into simply two parts, a traditional Otsu method is imple-
mented. When three or more classes is necessary for a proper segmentation, we
should consider the time consuming problem. Here, for the segmentation more
than 2 classes but less than 5 classes, we used recursive Otsu method to reduce
the iteration time. If more classes(for example , 50) is needed to get a correc-
tive segmentation, recursive Otsu can still not satisfy our needs for the purpose
of less time consuming. In order to make a balance between the performance
and time consuming, a heuristic algorithm called Nelder-Mead is combined with
Otsu to reduce time consuming further more.

Third, we use Just-noticeable difference (JND) histogram to merge the over
segmented areas. As we know that Otsu method just consider the pixel values
but not the spatial conditions of these pixels, by applying JND method, a pixel
can be merged to the background nearby it if the difference between its pixel
values and the background can’t be differentiate by human eyes. The whole
process of our proposed method is shown in Fig. 1.

The remaining portion of this paper is organized as follows. Related meth-
ods are surveyed the proposed in section 2. Section 3 describes segmentation
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method. In Section 4, experimental results are presented together with discus-
sion. Finally, Section 5 concludes this research.

2 Related Method Survey

There are primarily four types of segmentation techniques: thresholding, bound-
ary based, region based and hybrid techniques.

Among the thresholding techniques, more than ten approaches of determin-
ing the threshold have already been proposed, most representative ones are
P-tile method, bimodal method, Otsu method, minimum error method, maxi-
mum entropy method and iterative method [22]. These studies are focused on
the selection of the best single threshold from gray-level images. Among these
methods, the Otsu method [18] is considered as the best algorithm with high
robustness. In the luminance of one-dimensional gray level histogram of an im-
age, Otsu method takes the variance between classes as the criterion to choose
the optimal segmentation threshold. Maximum variance between clusters can
automatically obtain the optimal threshold in the statistical sense and has a
better effect on differing the classes such as foreground and background.

For the boundary based methods, these methods search for pixels that lie
on a region boundary (or at the boundary between two regions). These pixels
are called edges [14]. An edge is characterized by a significant local change in
image intensities. Edges are detected by looking at neighboring pixels. The
basic assumption is that the change in pixels values between neighboring pixels
inside a region is not as significant as the change in pixels values on the regions
boundary. When the difference between two regions grows, the change becomes
bigger and the edge becomes stronger. Sometimes weak edges should be detected
as strong edges and in other times they should not. Consequently, not all the
detected edges create closed curves, which are necessary to separate between
regions. Therefore, some types of post/pre-processing techniques, such as [19]
[26] [16] [20] are required for grouping the detected edges into connected surfaces
to represent the region. In [15], an Edge Flow method was presented that is
based on the edge directions rather than the edge energy. They detected the
regions boundaries by identifying a flow direction at each pixel location that
point to the closest boundary. Then, it follows by detection of the locations that
encounter two opposite directions of edge flow. However, the main drawback of
many boundary-based methods is the over-segmentation result, which does not
always correctly reflect the image nature.

The region based methods gather similar pixels according to some homo-
geneity criteria [3]. They are based on the assumption that pixels, which belong
to the same homogeneous region, are more alike than pixels from different ho-
mogeneous regions. The split-and-merge or the region growing techniques are
examples for such method [2]. The region-growing algorithm initially defines
each pixel as a region. Then, it scans the image from left to right and from top
to bottom and compares the current pixel with its neighboring regions that were
already scanned. If the pixel is sufficiently similar to one of its adjacent regions
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it is added to that region. If it is not close enough to any of them, then it is still
defined as a different region. On the contrary, the split-and-merge techniques [9]
initially assume that the image is composed of one region. It splits inhomoge-
neous segment into four rectangular segments and merge four adjacent regions if
they are found to be similar. When no region can split and no four adjacent re-
gions can merge the algorithm is terminated. Two main drawbacks characterize
these techniques. They are both strongly dependent on global pre-defined ho-
mogeneous criteria thresholds while the region-growing technique depends also
on initial segments, which is the first pixel/segment, that is first to be scanned
and on the order of the process.

The hybrid technique improves the segmentation result by combining the
above methods for segmentation. Many of the hybrid techniques combine the
region-based method with the boundary-based method. Some used the com-
bination of the histogram-based with the region-based methods. The hybrid
technique for segmentation is very common since it relies on wide information
as global (histogram) and local (regions and boundaries). An example of a hy-
brid technique was presented in [21], which integrated between regions-based
and boundary-based methods. First a split-and-merge algorithm is performed
in order to initially segment the image. Then, the contours of the obtained
regions are refined using the edge information. Later, the watershed algorithm
[25] was presented. It begins with a boundary-based method to get gradient
magnitude. Then, regions are produced by a region-growing technique. In [8],
Haris et al. presented a segmentation algorithm using the watershed algorithm
and regions merging. They applied the watershed transform to initial partition-
ing of the image into primitive regions. The output of the watershed used as an
input for hierarchical (bottom-up) region merging process, which produced the
final segmentation.

In this paper, an effective multilevel threshold selection method of color
image segmentation is proposed based on Otsu method.

In recent years, the traditional Otsu method has been improved and pro-
moted by many researchers. By using the joint histogram of original image
and its neighbor smoothing image, Liu [13] have extended the Otsu method to
2-D and switched the threshold into a vector, this concept greatly improved the
segmentation result. How-ever, searching optimal threshold in two dimensional
spaces increased the computation cost significantly, which limited the applica-
tion of the algorithm. In paper [10], a Two-Stage Multi-threshold Otsu method
has been put forwarded on multi-level thresholding on Otsu method, but still
focus on gray-level image. A lot of optimizations have already been proposed in
order to improve the performance of 2-D Otsu, such as by using integral image,
D.Han [7] concerns the problem of tree segmentation in color image based on
2-D Otsu in HSI color space while the background of the image should be quite
simple and the H component of the tree in HIS color space need to be calculated
in advance, so the method meets a huge restriction.

Compared with the gray image, the most salient feature of color images
is the increase of the carrying data and information. Generally, color spaces
always contain three components, for instance, the most commonly used RGB
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channels. Each channel of the color space has a high correlation to the others.
In this way, to reduce the redundant information processing is quite important.

3 Proposed Algorithm

In this paper, a novel method of Karhunen-Loeve transform(K-L transform)
based Multi- level Otsu together with Sobel edge detection and K-Means clus-
tering method has been proposed to extend the traditional gray level Otsu
method to achieve the color image segmentation.

3.1 Step One

The transformation of the color space is a vital part in image processing. Con-
sidering a color image in RGB color space as an input, all colors can be seen as
different combinations of three basic colors: red (R), green (G) and blue (B).
Since these three components have great correlation with each other, a robust
and effective transform should be chosen to reduce the redundant relationships
in the color space. Here we use the K-L transform, which is one representation
of a stochastic process. The process is to map the multi-dimensional data with
correlation into a new coordinate in the region of the data distribution in order
to compress the data information while the orientation of the new coordinate
should keep the maximum amount of the information. This method is helpful
to achieve dimensionality reduction of high dimensional data.

Given a color image of size(x, y), we can consider it as a three dimensional
matrix P (x, y, 3) in which each dimension contains the information of each com-
ponent. In order to keep the color information, we just change the three di-
mensional matrix P into two dimensional matrix P ′(x ∗ y, 3) which keeps each
component that in one column. We get three column vectors represent the three
components:

R =




R1

R2

...
Rx∗y


 , G =




G1

G2

...
Gx∗y


 , B =




B1

B2

...
Bx∗y


 , (1)

Then
∑

ij , the covariance matrix is calculated by the following formula:

∑
ij = cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)]

= E(XiẊj) − µiµj .
(2)

where µi = E(Xi) (E is the statistical expectation) and i, j = R, G,B
Since matrix P′ only has three columns, the covariance matrix is calculated

as equation (3):

Σ =




cov(R, R) cov(R, G) cov(R, B)
cov(R, R) cov(R, G) cov(R, B)
cov(R, R) cov(R, G) cov(R, B)


 (3)
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Figure 2: The right image is the component with most of the information of the
left one after K-L transform.

Let ϕk be the eigenvector corresponding to the k-th eigenvalue λk of covari-
ance matrix Σ that Σϕk = λkϕk(k = R, G,B). As the covariance matrix is
symmetric, its eigenvectors ϕk are mutually orthogonal and we can construct a
3 × 3 orthogonal matrix ϕ by formula (4):

ϕ , [ϕR, ϕG, ϕB ] satisfying ϕT ϕ = I (4)

N eigen equations above can be combined to be expressed as Σϕ = ϕΛ,
here Λ = diag(λR, λG, λB) is a diagonal matrix. In this way, we choose the
maximum value among λR, λG and λB and make P ′ multiply the corresponding
ϕ. Finally, the new image is only composed of the component that keeps most
of the information from the original image. Fig. 2 shows some examples:

3.2 Step Two

According to [18], in the case of single threshold segmentation (two partitions),
the constraint equation is σ2

B + σ2
W = σ2. In the equation, σ2

W is within class
variance and σ2

B is the between class variance which equals to ω0ω1(µ0 − µ1)
2

and σ2 is the total variance of the image.
In accordance with the constraints above, because the total variance is con-

stant for a given image, it is equivalent to select the optimal threshold by max-
imizing between class difference or minimizing within class difference. This
principle reflects that the optimal threshold value by Otsu method could make
the best segmentation between the target and background.

But with increasing complexity of images, a single threshold is certainly
insufficient. So based on the classical Otsu method, we could extent the function
to n-class segmentation:

σ2
B = σ2 − σ2

W =
n−1∑

j=0

n−1∑

k=j

ωjωk(µj − µk)2 (5)
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If we just use the function above to realize the multi-threshold segmentation,
the computation load increases exponentially as the number of the threshold
grows.

So in this paper, after get the image handled by the K − L transform, a
proposed multi-threshold segmentation by Otsu method is then carried out on
the low dimensional image which contains most of the information.

For the segmentation of classes no more than four, we use the H-table method
which was proposed by Liao and chung [12]. First, the between-class variance
σ2

B of class n is modified as

σ2
B =

n∑

k=1

ωkµ2
k,

where

ωk =
∑

i∈Ck

pi, µk =

∑

i∈Ck

ipi

ωk
=

µ(k)

ωk
.

There is no µ2
j because it is independent of the choice of the optimal thresh-

olds. Second, the u − v interval zeroth- and first-order moment, P (u, v) and
S(u, v) of a class with gray levels from u to v are defined in (6):

P (u, v) =
v∑

i=u

pi, S(u, v) =
v∑

i=u

ipi (6)

Hence, all the values of P (u, v) and S(u, v) can be calculated recursively, so
that the values of ωk and µ(k) can be obtained by indexing the look-up table
in equation (7):

ωk = P (1, tk) − P (1, tk−1) = P (tk−1 + 1, tk)
µ(k) = S(1, tk) − S(1, tk−1) = S(tk−1 + 1, tk)

(7)

Therefore, the σ2
B of class i can be calculated and stored in the so-called

H-table:

H(t(i − 1) + 1, ti) =
S(t(i − 1) + 1, ti)

2

P (t(i − 1) + 1, ti)
(8)

For the classes more than four, the H-table method still costs too much time.
We use several methods to simplify the segmentation.

a) For n-class separation, we segment the histogram into n − 1 parts.

b) From formula (5), we maxmize σ2
B to get the optimal segmentation. Equiv-

alently, we could minmize the normalized class variance expressed as fol-
lows:

T = 1 − σ2
B

σ2
.
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Figure 3: Fig. 2.Workflow of proposed Multi-thresholding

c) For each part, Nelder-Mead simplex algorithm [11] is utilized to calculate
the local minimum values of function T .

d) Segment the image into n classes according to the n − 1 local minimum
values.

But another important factor is the method how we defined the optimal
classes n to get the most suitable segmentation. Here, a separation factor is
used as a condition to determine whether the segmentation is optimal or not.

The SF (separation factor) is defined as
σ2

B

σ2
and range from 0 to 1. When the

value of SF tends to 1, it means that the image has been separated absolutely.
The work flow of this part is showed in Fig. 3:

3.3 Step Three

Considering that the foreground objects always have relative strong edge, after
obtaining the segmented image through multi-threshold Otsu, we apply Sobel
operation on the original image and add the edge information to the segmented
one so that we can keep more edge details.

The traditional Sobel operator uses two 3×3 kernels (one for horizontal, and
another for vertical) which are convolved with the original image to calculate
approximations of the brightness difference. But in many cases, only two di-
rections are far from satisfactory. So in this paper, we use the eight-orientation
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Sobel operator to keep more information. The models are as follows:




−1 −2 −1
0 0 0
1 2 1







−2 −1 0
−1 0 1

0 1 1







−1 0 1
−2 0 2
−1 0 1







0 1 2
−1 0 1
−2 −1 0




0 degree 45 degree 90 degree 135 degree




1 2 1
0 0 0

−1 −2 −1







2 1 0
1 0 −1
0 −1 −2







1 0 −1
2 0 −2
1 0 −1







0 −1 −2
1 0 −1
2 1 0




180 degree 225 degree 270 degree 315degree
(9)

According to the n-class separation of the previous step, we also divide the
edge map into n classes, and then the edge information is added to the segmented
colormap to enhance the weight of the foreground objects. The enhance of the
edge information makes the segmentation more clearly.

3.4 Step Four

In the final step, a K-Means method is used to merge the segmented image.
The K-means clustering is a partitioning method for grouping objects so that
the within-group variance is minimized. By minimizing the local dissimilarity
of each subset, the algorithm will assign the optimal distribution of all subsets.
From our previous result, we observed that there are many regions with similar
intensities in a colormap of the segmented image, which result in many local
minima that increase over segmentation. In this way, K-means to merge the
over segmented regions and separate the image into background and foreground.

The method is applied by the following steps:

a) Initialize two class centers, for example, value 0 and 1. These centers repre-
sent initial group centroids.

b) Calculate the histogram bin value distance between each image pixel and
class centers, assign each pixel to its closest class centroid.

c) Recalculate the positions of the centroids by calculate the mean histogram
bin value of the same group.

d) Repeat Steps b) and c) until the centroids no longer move. This produces
a separation of the objects into groups from which the metric to be mini-
mized can be calculated.

4 Experimental Results and Discussion

In this section, two experiments have been done to evaluate the performance of
the proposed algorithm. In the first one, we compare the results of our proposed
method with some others. Fig. 4 illustrates the results.
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Figure 4: (a) The source images. (b) Results after step three by the proposed
algorithm. (c) Results after step four by the proposed algorithm. (d) Results
after background subtraction and morphology process. (e) Results from other
methods.

The first row shows a comparison of the proposed algorithm and MCVT
in [17] applied to an image collected from Berkeley segmentation dataset [27].
The image after Otsu multi-thresholding (b) and result after region merging (c)
shows that our results keep more information than (e).

The results of the second row compare the performance with the proposed
algorithm and Mean Shift and Normalized Cuts (MSNC) in [24]. From the result
after background subtraction (d), we could see that our approach segments the
image better than the result (e) in [24].

In the third row, the results of our method keep more details than that of
automatic seeded region growing (ASRG) method in [23], the result (d) contains
the entire flower pixels while (e) lose some parts.

In the second experiment, we calculate the time consumption of our ap-
proach. The experiment environment is as follows: Intel Core2 CPU, E8500 -
3.16GHz, 3.25 GB RAM. The develop tool is Matlab R2007b. The calculation
time for each stage can be seen in Table.1. Compare to the time consumption
in [24] [23], our method costs less time work load.

According to the experimental results, we can come to the conclusion that
our method extends the traditional Otsu method from gray level to color im-
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Table 1: Calculation Time For Each Step
Size 320×240 1152×872
Class 3 16 64 3 16 64
K-L 0.010 0.053

Multi-th 0.084 0.088 0.140 0.596 0.732 1.084
Sobel 0.085 0.138 0.221 0.323 0.453 0.803

K-means 0.220 1.126
Total 0.399 0.456 0.591 2.098 2.364 3.066

ages. Moreover, it can achieve better performance and lower computational
complexity than similar works. It is robust to the user inputs.

5 Conclusion

In this paper, we develop a robust image segmentation system in order to sep-
arate an image into proper number of parts and consume less time.

The system consists of three main modules. Firstly we use K-L theorem
as a preprocessing in order to reduce the three dimensional data (RGB) into
only one dimension and keep the important information of original color image
as much as possible. Second, we have built a relative robust Otsu-based seg-
mentation system as a rough segmentation, for example, to separate an image
into about 50 parts. There are three conditions in multi-threshold Otsu system.
When we need to separate an image into simply two parts, a traditional Otsu
method is implemented. When three or more classes are necessary for a proper
segmentation, we should consider the time consuming problem. Here, for the
segmentation more than 2 classes but less than 5 classes, we used recursive Otsu
method to reduce the iteration time. If more classes(for example , 50) is needed
to get a corrective segmentation, recursive Otsu can still not satisfy our needs
for the purpose of less time consuming. In order to make a balance between the
performance and time consuming, a heuristic algorithm called Nelder-Mead is
combined with Otsu to reduce time consuming further more. Thirdly, we use
Just-noticeable difference (JND) histogram to merge the over segmented areas.

As we know that Otsu method just consider the pixel values but not the
spatial conditions of these pixels, by applying JND method, a pixel can be
merged to the background nearby it if the difference between its pixel values
and the background can’t be differentiate by human eyes.
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Abstract

The contribution concerns an approach to the construction of multidi-
mensional copula models from the low-dimensional copulas. Author define
an operator of composition for continuous copulas in an analogous manner
to the already developed approach for discrete probability distributions.

The operator of composition is first defined for continuous probabil-
ity densities. Then the formula for special case of composition in general
copulas is inferred. And finally, for the Frank copulas subclass, the def-
inition is simplified using the properties of the corresponding generating
functions.

1 Introduction

The authors present a definition of operator of composition and analysis of its
properties within the theory of copulas in an analogous manner to the definitions
in field of discrete probabilistic distributions (see, e.g., Jiroušek [2]), theory of
possibility (see Vejnarová [7]) and generalization to the Dempster-Shafer theory
of evidence (see Jiroušek and Vejnarová [3]). The employment of operator of
composition provides a possibility to construct multidimensional distribution
with given dependency structure using the apparatus of copula theory.

2 Preliminaries and basic notions

Throughout the paper we shall consider vectors of continuous random variables
(X1, . . . , Xd) with continuous one-dimensional marginal CDFs. The random
vector obtained by the probability integral transform

(U1, U2, . . . , Ud) = (F1(x1), F2(x2), . . . , Fd(xd))

has uniform components.
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Now the copula of vector (X1, . . . , Xd) is defined as a joint CDF of vector
(U1, U2, . . . , Ud) in the following way

C(u1, u2, . . . , ud) = P [U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud] .

The d-dimensional copula C : [0, 1]d → [0, 1] contains information about depen-
dencies among particular variables X1, . . . , Xd and the marginal CDFs Fi hold
information concerning one-dimensional marginal distributions.

A theoretical background of copula theory is provided by the famous Sklar’s
theorem (see [6]) which states that a multivariate CDF of a random vector
(X1, . . . , Xd) can be written in the form

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) ,

where C denotes a copula. In case of continuous Fi the copula is unique.
As we already mentioned, a copula is a CDF. But for statistical applications

it is reasonable to express the multidimensional distribution in terms of densities.
If the copula function is sufficiently differentiable we can express the copula
density in the following manner

c(u1, u2, . . . , ud) =
∂d

∂u1 · · · ∂ud
C(u1, u2, . . . , ud) (1)

and the multivariate density can be expressed in the form

f(x1, x2, . . . , xd) =
∂d

∂x1 · · · ∂xd
F (x1, x2, . . . , xd) =

=
∂d

∂x1 · · · ∂xd
C(F1(x1), F2(x2), . . . , Fd(xd)) =

= c(F1(x1), F2(x2), . . . , Fd(xd)) ·
d∏

j=1

fj(xj),

where fi(xi) = dFi(xi)
dxi

is a one-dimensional marginal density.
The shortened notation f(xK) denotes a multidimensional density function

of variables having indices from K. Having two sets of variable indices K and
L, the symbol f(x↓K∩L) denotes corresponding marginal density summed up
from the multidimensional density f(xK).

In order to shorten the expressions, the symbol GL with L = {`1, . . . , `j}
stands for a vector (G`1(x`1), . . . , G`j (x`j )).

3 Archimedean copulas

One of the popular classes are the Archimedean copulas. Different represents of
this class allows to model different types of dependence and popularity of this
class probably stems from the ability to model different strength of dependence
by the choice of single parameter.
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A copula C is Archimedean if it can be represented using generator function
ψ in the following way

C(u1, . . . , ud, ϑ) = ψ
(
ψ[−1](u1, ϑ) + · · ·+ ψ[−1](ud, ϑ), θ

)
.

The generator function ψ : [0,∞)→ [0, 1] is strictly decreasing convex con-
tinuous function. The function ψ[−1] is a pseudo-inverse of the generator func-
tion (for the properties see, e.g., Nelsen [5]).

Among the classes of the Archimedean copulas belong the well known Frank,
Gumbel and Clayton copulas (for detail see, e.g., Nelsen [5], graphs in B́ına and
Jiroušek [1]).

By careful derivation from Formula (1) we can infer that for the copula
density holds

c(u1, . . . , ud) = ψ(d)
(
ψ−1(u1) + · · ·+ ψ−1(ud)

)
·
d∏

j=1

(
ψ−1

)′
(uj). (2)

One of the important classes of Archimedean copulas is the family of Frank
copulas. It is defined by a generator

ψθ(t) = −1

θ
log(1 + exp(−t)(exp(−θ)− 1))

with an inverse

ψ−1θ (t) = − log

(
exp(−θt)− 1

exp(−θ)− 1

)
.

Notice that θ ∈ R \ {0}.

4 Operator of composition

The operator of composition can be defined in an analogous manner to the
definition in case of discrete probabilistic distributions (see Jiroušek [2]).

Definition 1. Consider two sets of continuous variables XK and XL, a prob-
ability density f(xK) and a probability density g(xL) with supports fulfilling
condition Supp f(x↓K∩L) ⊆ Supp g(x↓K∩L). The right composition is given by

f(xK) . g(xL) =
f(xK)g(xL)

g(x↓K∩L)
.

Analogously to the discrete case (see again Jiroušek [2]) we can iterate the
operation of composition in order to build up a multidimensional compositional
model.

Under certain conditions we can take advantage of the copula properties and
reformulate the previous definition.
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4.1 Composition with one-dimensional intersection

First of all, we will focus at the situation where the second operand contains
only one variable appearing in the first operand.

Theorem 1. Let XK and XL be two sets of variables, L = {`1, . . . , `j} and
there exist exactly one m ∈ {1, . . . , j} such that `m = K ∩ L. For the supports
we require Supp f(x`m) ⊆ Supp g(x`m). Then the right composition can be ex-
pressed using the copula density cg corresponding to density g in the following
manner

f(xK) . g(xL) = f(xK)cg (GL(xL))
∏

i∈L\{`m}
gi(xi).

Proof.
The proof is straightforward. Considering that

g(xL) = cg (GL(xL))
∏

i∈L
gi(xi)

we can express and simplify the form from the assertion

f(xK) . g(xL) =
f(xK)g(xL)

g(x↓K∩L)

=
f(xK)cg (GL(xL)))

∏
i∈L gi(xi)

g`m(x`m)

= f(xK)cg (GL(xL))
∏

i∈L\{`m}
gi(xi).

Example 1. A simple application of copulas can be based on subsequent ad-
dition of two-variable copulas to the constructed model. Let us formulate the
composition of two two-variable copulas with one common variable.

Consider two probability densities given by copula

f(x1, x2) = cf (F1(x1), F2(x2))f1(x1)f2(x2)

and

g(x2, x3) = cg(G2(x2), G3(x3))g2(x2)g3(x3)

such that Supp f(x2) ⊆ Supp g(x2) their right composition is given by

f(x1, x2) . g(x2, x3) =
f(x1, x2)g(x2, x3)

g(x2)
=

=
cf (F1(x1), F2(x2))f1(x1)f2(x2)cg(G2(x2), G3(x3))g2(x2)g3(x3)

g2(x2)
=

= cf (F1(x1), F2(x2))cg(G2(x2), G3(x3))f1(x1)f2(x2)g3(x3).
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4.2 Composition in Frank copulas

Now we will focus at the composition where the right operand is a Frank cop-
ula. Its properties allows us to simplify the expression even in general case of
intersection of K and L containing more variables.

But first of all we need to show that the marginalization of densities given
by Frank copula retain its type and parameter.

Lemma 1. Marginalization (over a single variable) preserves the type and pa-
rameter of Frank copula c in the following sense:

c
(
GL\{m}

(
xL\{m}

))
=

∫ ∞

−∞
c(GK(xK))gm(xm)dxm

where m ∈ L = {`1, . . . , `j}
Proof.
Let us start from the marginalization of density of continuous variables. Above
in the Section 2 we inferred that

g
(
xL\{m}

)
= c

(
GL\{m}

) ∏

i∈L\{m}
gi(xi). (3)

On the other hand, if we straightforwardly rewrite the formula of marginal-
ization of densities into the terms of copula densities we obtain

g
(
xL\{m}

)
=

∫ ∞

−∞
g(xL)dxm =

=

∫ ∞

−∞
c(GL)

∏

i∈L
gi(xi)dxm =

=

∫ ∞

−∞
c(G`1(x`1), . . . , G`j (x`j ))

∏

i∈L
gi(xi)dxm.

Substituting ui = Gi(xi) for all i ∈ L we arrive at

g
(
xL\{m}

)
=

∫ 1

0

c(u1, . . . , uj)dum
∏

i∈L\{m}
gi(xi).

Using the Formula (2) for the density of Archimedean copula we get

g
(
xL\{m}

)
=

∫ 1

0

ψ(j)

(∑
i∈L ψ

−1(ui)

)

∏
i∈L ψ

′ (ψ−1(ui))
dum

∏

i∈L\{m}
gi(xi).

This formula can be integrated over um with the result

g
(
xL\{m}

)
=



ψ(j−1)

(∑
i∈L ψ

−1(ui)

)

∏
i∈L\{m} ψ

′ (ψ−1(ui))




1

um=0

∏

i∈L\{m}
gi(xi).
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From the definition of the generating function in case of Frank copulas we
can see that setting of um = 0 results to

ψ−1(0)→ +∞

and setting of um = 1 implies

ψ−1(1) = 0.

We can see that um = 1 results into the cancelation of the corresponding
term in the sum and therefore we obtain the desired Formula (3).

The only step remains. It is necessary to show that the term obtained by
setting um = 0 is equal to zero. We can see in McNeil and Nešlehová [4] that
the derivative of Frank copula generator is

ψ
(j)
θ (t) = (−1)j

1

θ
Li−(j−1)((1− e−θe−t))

for t ∈ (0,+∞). The symbol Li denotes a polylogarithm function defined by an
infinite sum in the following way

Lis(z) = z +
z2

2s
+
z3

3s
+ . . . .

Calculation of the limit of any derivative ψ
(j)
θ (t) for t going to infinity we

arrive at the value of polylogarithm special function in point zero. This is
obviously equal to zero and the term for um = 0 cancels which finishes the
proof.

Let us denote that the preceding lemma concerns the marginalization over a
single variable but its use can be easily iterated. Moreover, it seems that it can
be easily generalized on other classes of Archimedean copulas using the results
of McNeil and Nešlehová [4] concerning the derivatives of Archimedean copula
densities.

Theorem 2. The density g(xL) in the second operand of right composition is
given by a Frank copula c

g(xL) = c(GL)
∏

i∈L
g(xi).

Then the right composition can be expressed as follows

f(xK) . g(xL) = f(xK)
c(GL)

c(G↓K∩L)

∏

i∈L\K
g(xi).

Proof.
Starting from the definition of operator of composition we have

f(xK) . g(xL) =
f(xK)g(xL)

g(x↓K∩L)
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and using the Lemma 1 we know that using the marginalization (iteratively)
the copula type and parameter remain unchanged

f(xK) . g(xL) = f(xK)
c(GL)

∏
i∈L gi(xi)

c(G↓K∩L)
∏
i∈K∩L g(xi)

.

Now it is apparent that we arrive at the assertion of the theorem.

5 Conclusion

The paper presents a definition of operator of composition for continuous den-
sities together with the elicitation of a simplified formula employing the copula
densities in case of certain type of composed copulas and for the case of Frank
copula subclass.

The work can continue with a generalization of the results on other classes
of Archimedean copulas such as Clayton, Gumbel and others. Also the study
of properties (such as Shannon entropy) of the composition in copulas is still
opened.
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Abstract

This is the first attempt to introduce causal models in a composi-
tional form. This “algebraic” form of representation of multidimensional
probability distributions seems to be quite useful for representation of
causal models because of two reasons. First, decomposition of the model
into its low-dimensional parts makes some of computations feasible, and,
second, it appears that within these models, both conditioning and inter-
vention can be realized as a composition of the model with a degenerated
one-dimensional distribution. Surprisingly, the syntax of these two com-
putational processes are almost the same; they differ from each other just
by one pair of brackets.

1 Introduction

Each of us is interested in the relation of causation from childhood; it first
enables us to answer the WHY questions, and a couple of years later, more
sophisticated WHAT IF questions. Moreover, referring to any textbook we can
see that practically all the knowledge is explained using causal relation. For
example, just to be able to use causality, some properties of light are explained
using wave theory of light, and to explain some other properties it is useful to
consider light to be a flow of particles - photons.

The importance of causation is visible also from the fact that from most of
the articles in professional journals describing data mining applications one can
see that the described research was performed with the (often hidden) goal to
support or to uncover some new causal relations. However, this is sometimes
misleading, because, as Pearl says in his book ([4], page 40): The sharp dis-
tinction between statistical and causal concepts can be translated into a useful
principle: behind every causal claim there must lie some causal assumption that
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is not discernable from the joint distribution and, hence, not testable in obser-
vational studies. Such assumptions are usually provided by humans, resting on
expert judgment. Therefore, when using causal models one should keep this
fact in mind. We can construct causal models only when we have a knowledge
allowing us to specify causal relations, allowing us to determine what is cause
and what is effect.

In this paper we present some preliminary ideas regarding application of
probabilistic causal models represented in a form of compositional models. To
keep the presentation as simple and informal as possible, we will introduce most
of the concepts just on examples. We will consider only finite valued random
variables that will be denoted by upper case Latin characters: X,Y, Z,W, ....
Sets of these variables will be denoted by lower case characters (x, y, ...), and
their probability distributions will be denoted using characters of a Greek al-
phabet κ, λ, µ, ν, π. So, κ(X1, . . . , Xn) denotes an n-dimensional probability
distribution. Its n − 1-dimensional marginal distribution will be denoted by
κ−Xi , or, denoting x = {X1, . . . , Xi−1, Xi+1, . . . , Xn} we use also the symbol
κ↓x. The latter symbol κ↓y can be used for any y ⊆ {X1, . . . , Xn}.

In the above mentioned Pearl’s book [4] (from which the causal model studied
in this paper is taken over), one of the most important notions is the concept
of an intervention. It means that by an external force we change the value of
an intervention variable. As a simple example consider two binary variables:
A - alarm bell rings or not, and B - smoke is or is not in a room. A smoke
in the room makes the alarm bell ring. Therefore, if π(A,B) describes the
relationship between these two variables then the conditional probability π(A =
bell rings|B = smoke is) = 1, and π(B = smoke is|A = bell rings) � π(B =
smoke is). But when considering the intervention that will be here denoted by
do(A = bell rings), which means that by some way or another we make the
alarm bell ring (no matter whether there is a smoke in the room or not) it does
not create a smoke in the room. Therefore

π(B = smoke is|do(A = bell rings)) = π(B = smoke is).

2 Causal networks

Let us start considering a classical example from [4] represented by a Bayesian
network, the graph of which is in Figure 1(a). From this graph we can see that
this Bayesian network is specified by five (un)conditional probability distribu-
tions. Let they be π1(S), π2(G|S), π3(R|S), π4(W |G,R), π5(P |W ).

The meaning of the variables is the following:

S - season of a year;

G - garden sprinkler is on, off;

R - it is raining/snowing or not;

W - grass is wet or not;

P - pavement is slippery or not.
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Figure 1: Wet grass example.

This Bayesian network defines a five-dimensional probability distribution

κ(S,G,R,W,P ) = π1(S)π2(G|S)π3(R|S)π4(W |G,R)π5(P |W ) (1)

that represent knowledge describing the state of the pavement in front of a
house. It may be slippery or not. Usually, it is slippery when it is wet, which
happens, for example, during a rain/snow fall or when it is splashed by the
garden sprinkler. Usage of the words “usually” and “may be” suggests that a
probabilistic model is adequate (there are no deterministic relationships).

It is well-known from Bayesian network theory (see e.g. [1]) that without
changing the resulting joint distribution κ we can modify the graph and the sys-
tem of conditional distributions so that distribution κ is defined by another (but
probabilistically equivalent) Bayesian network with a graph from Figure 1(b).

The situation is different when we start considering the model to be causal.
It means that we assume that the arrows point from causes to effects. Now, if
the graph from Figure 1(a) is causal then the graph from Figure 1(b) cannot
be causal because of the different orientation of the arrow connecting nodes
S and G. Really, one can hardly imagine that switching the sprinkler on can
change winter to summer. Nevertheless, taking the second glance we can see that
neither the graph from Figure 1(a) can be considered to be causal. Imagine that
you take a watering can and keeping the pavement dry you carefully sprinkle
grass. It means, you make an intervention on variable W - grass is wet. As
a matter of course, it does not change the state of the pavement. Similarly,
neither making the pavement slippery (for example using some oil) makes the
grass wet. So, for this example, we propose to accept the causal model with the
graph from Figure 1(c).

Let us, now, illustrate on this example once more the difference between
conditioning and the intervention. From Bayesian network theory we know that
if κ(S,G,R,W,P ) is defined by Formula (1) then κ(G|S) = π2(G|S). It is quite
natural to assign much higher probability to sprinkler=on in summer than in
winter. Therefore, since it is quite natural to assume that π1(S = summer)

.
=

π1(S = winter) and therefore also κ(S = summer)
.
= κ(S = winter), we can

easily deduce that

κ(S = summer|G = on)� κ(S = winter|G = on).
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On the other hand, as said in Introduction, by the intervention we understand
the situation when we change a state of a variable by an external force. It
means, for example, that we approach the water tap and let the water sprinkle.
Naturally, by this action we do not influence a season of the year. Therefore,

κ(S = summer|do(G = on)) = κ(S = summer)
.
= κ(S = winter|do(G = on) = κ(S = winter).

This is why, in causal networks, the intervention is realized not only by a change
of a state of the considered variable, but also by deleting all the arrows heading
to the considered node [4]. As the reader can see, deleting the arrow from S
to G in Figure 1(a) (or Figure 1(c)) makes the variables S and G independent,
and therefore the change of a state G does not influence the probability of S.

For a nice, more sophisticated economic causal model see [5].

3 Compositional models

For a more thorough introduction to compositional model theory the reader is
referred to [2]. In this paper we will introduce these models rather informally.

The basic idea is simple. Considering a three-dimensional distribution
π(X,Y, Z) and knowing that variables X and Z are conditionally indepen-
dent given variable Y , one can decompose π into its two-dimensional marginals
π(X,Y ) and π(Y,Z). It means that the original three-dimensional distribu-
tion can be unambiguously reconstructed (composed) from its two-dimensional
marginals using a simple formula

π(X,Y, Z) =
π(X,Y ) · π(Y,Z)

π(Y )
.

This formula can be rewritten using an operator of composition . that is defined
as follows.

Consider two (non-empty) sets of variables x and y. We do not impose any
conditions regarding the mutual relation of these sets; they may be but need
not be disjoint, one may be a subset of the other. Let κ and λ be distributions
defined for x and y, respectively. To avoid technical problems connected with
division by zero, we assume that marginal λ↓x∩y dominates κ↓x∩y, i.e.,

λ↓x∩y(·) = 0 =⇒ κ↓x∩y(·).

In this case we can define composition of κ and λ by the formula1

κ . λ =
κ · λ
λ↓x∩y

.

1To avoid technical problems, if not specified explicitly otherwise, in this paper we will
consider only positive distributions. Under this assumption the dominance assumption holds
for any couple of distributions and therefore their composition is always defined.
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Note that for disjoint x and y the marginal κ↓x∩y = λ↓x∩y = 1, and λ . κ
simplifies to a product of (independent) distributions.

It is known that the composition of distributions κ(x) and λ(y) is always
a distribution of variables x ∪ y. This means that an iterative application of
the operator of composition to a sequence of low-dimensional distributions may
yield a multidimensional distribution. Nevertheless, it is not a difficult task
to show that this operator is generally neither commutative nor associative.
Therefore, if the opposite is not explicitly specified by brackets, we will always
apply the operator of composition from left to right. Therefore, e.g.,

π . κ . λ . µ . ν = (((π . κ) . λ) . µ) . ν.

To illustrate it let us construct a compositional model for the wet gras exam-
ple from Section 2. Consider the Bayesian network that is defined by the graph
from Figure 1(a), and a system of five distributions π1(S), π2(G|S), π3(R|S),
π4(W |G,R), π5(P |W ). Defining

λ1(S) = π1(S) = κ↓{S},

λ2(S,G) = π1(S)π2(G|S) = κ↓{S,G},

λ3(S,R) = π1(S)π3(R|S) = κ↓{S,R},

λ4(G,R,W ) = (π1(S)π2(G|S)π3(R|S))↓{G,R}π4(W |G,R) = κ↓{S,R},

λ5(W,P ) = (π1(S)π2(G|S)π3(R|S)π4(W |G,R))↓{W}π5(P |W ) = κ↓{W,P},

then the compositional model of the distribution represented by this Bayesian
network is

κ(S,G,R,W,P ) = λ1(S) . λ2(S,G) . λ3(S,R) . λ4(G,R,W ) . λ5(W,P ).

4 Conditioning by composition

From now on, consider a general probability distribution κ(X1, X2, . . . , Xn) and
define a degenerated one-dimensional probability distribution ν|i;α as a distri-
bution of variable Xi achieving probability 1 for value Xi = α, i.e.,

ν|i;α(Xi) =

{
1 if Xi = α,
0 otherwise.

Let us compute

ν|i;a . κ =
ν|i;a(Xi) · κ(X1, . . . , Xn)

κ↓{Xi}

for any combination of values of all variables X1, . . . , Xn. It is clear that if
Xi 6= α, ν|i;a . κ = 0. In opposite case, if Xi = α, then

ν|i;a . κ =
κ(X1, . . . , Xi−1, Xi = α,Xi+1, . . . , Xn)

κ↓{Xi}(Xi = a)

= κ(X1, . . . , Xi−1, Xi+1, . . . , Xn)|Xi = α).
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It means that ν|i;a . κ is an n-dimensional distribution that equals 0 for all
combinations of values for which Xi 6= α. In case that Xi = α, then it equals
the conditional distribution κ(X1, . . . , Xi−1, Xi+1, . . . , Xn)|Xi = α). Therefore

κ(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi = α) = (ν|i;a . κ)−{Xi}.

Naturally, this way of expressing conditional distributions can also be used
for distributions represented as compositional models. Therefore, for

κ(X1, . . . , Xn) = µ1 . µ2 . . . . . µm

we get

κ(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi = α) =
(
ν|i;a . (µ1 . µ2 . . . . . µm)

)−{Xi}
.

As said above, in this paper we do not have space to go into theory of
compositional models, nevertheless let us state that the brackets in the preceding
formula are important. This is because the operator of composition is not
associative. Moreover, in the next section we will show an important property:
namely, if µ1 . µ2 . . . . . µm is a causal model then the intervention is computed
by the formula

κ(X1, . . . , Xi−1, Xi+1, . . . , Xn|do(Xi = α)) =
(
ν|i;a . µ1 . µ2 . . . . . µm

)−{Xi}
.

5 Compositional causal models

Consider a set {X1, X2, . . . , Xn} of finite-state variables. For each variable let
C(Xi) denote the set of the variables that are causes of Xi. Naturally, some of
C(Xi) may be empty (in fact, to get a correct model at least one of these sets
must be empty), and Xi 6∈ C(Xi). We say that the causal model is correct if
there exists an ordering of variables (without loss of generality we will assume
that it is the ordering X1, X2, . . . , Xn) such that C(X1) = ∅, and for all i =
2, 3, . . . , n C(Xi) ⊆ {X1, . . . , Xi−1}.

For the sake of simplicity denote xi = C(Xi) ∪ {Xi}. If we have probability
distributions µi(xi) we can construct a compositional causal model (CCM) as

κ(X1, . . . , Xn) = µ1(x1) . µ2(x2) . . . . . µn(xn).

There are several theorems in [2] saying under what conditions one can change
the ordering of distributions in a compositional model without influencing the
resulting joint distribution. It is important to stress that for causal models,
most of such transformations are forbidden. For causal models, we can consider
only those orderings that guarantee the correctness of a causal model, i.e., for
which C(Xi) ⊆ {X1, . . . , Xi−1}. And it is the result of Kratochv́ıl that says that
all these orderings define the same joint probability distribution κ(X1, . . . , Xn)
(see [3]).
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At the end of the last section we promised to show how to compute the result
of an intervention in CCMs. Let us repeat the idea of Pearl [4], who computes
it as a conditioning in a Bayesian network, in which all the arrows heading to
the intervention node are deleted. To do the same in a CCM we will need a
possibility to find a causal graph corresponding to a given CCM.

Consider a CCM µ1(x1) . µ2(x2) . . . . . µn(xn). If it is constructed in the
way described at the beginning of this section then for all i = 1, 2, . . . , n the set
xi \ (x1 ∪ . . . ∪ xi−1) is a singleton (i.e., |xi \ (x1 ∪ . . . ∪ xi−1)| = 1). In a few
lines below we will need a minor generalization of this condition, namely that

|xi \ (x1 ∪ . . . ∪ xi−1)| ≤ 1. (2)

Let us construct a causal graph from µ1(x1) . µ2(x2) . . . . . µn(xn) meeting
condition (2). The elements from x1 ∪ . . . ∪ xn are nodes of the constructed
causal graph, and there is an arrow (Xi → Xj) in this graph if and only if there
is a distribution µk(xk) in the CCM, for which

Xj ∈ xk;
Xj 6∈ x1 ∪ . . . ∪ xk−1;
Xi ∈ x1 ∪ . . . ∪ xk−1.

Now, consider two CCMs:

κ(X1, . . . , Xn) = µ1(x1) . µ2(x2) . . . . . µn(xn),

λ(X1, . . . , Xn) = κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn(xn),

and construct for both of them the corresponding causal graphs. It is evident
that if condition (2) holds for CCM κ, then it holds true also for CCM λ.
Moreover, the reader can almost immediately see that, in the causal graph
corresponding to CCM λ, there are no arrows heading to node Xi, and that all
the other arrows from the causal graph corresponding to CCM κ are preserved
in the causal graph corresponding to CCM λ. It means that an intervention in
CCM κ can be done through conditioning in CCM λ (see [4]):

κ(X1, . . . , Xi−1, Xi+1, . . . , Xn|do(Xi = α))

= λ(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi = α)

=
(
ν|i;a . (κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn(xn))

)−{Xi}

=
(
ν|i;a . µ1(x1) . µ2(x2) . . . . . µn(xn)

)−{Xi}
.

(Validity of the last equality is not trivial and therefore it is proved in Appendix
because it needs some more knowledge from compositional model theory.)

6 Conclusions

As promised in Introduction, we have presented some preliminary ideas regard-
ing causal compositional models. Namely, we have shown how to compute in-
tervention in these models. For the sake of simplicity we have assumed that the
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Figure 2: Generalized causal graph.

considered probability distributions are positive. Let us stress that this assump-
tion can easily be replaced by the assumption of dominance of the respective
distributions. So, the approach can be used also in situations when some of the
considered dependencies are deterministic.

Another straightforward generalization concerns situations that appear in
practical problems. When constructing a causal model, it happens quite often
that we know about the dependence of two (or more) variables but we do not
know which one is the cause of the other. It may be that both are influenced
by a third (unknown) variable. For example, consider the wet grass example
with the graph in Figure 1(c). We know that both the variables P and W are
influenced by G and R but we can hardly assume that they are conditionally
independent given G and R. For example, when the grass and the pavement
are covered with hoarfrost, the grass is wet and pavement is slippery though the
grass sprinkler may be off and it may not rain/snow. Therefore it may be useful
to have a possibility to introduce a dependence between (among) variables that
need not be causal. In the considered wet grass example it can easily be done
by considering that a couple of variables P,W has a common cause C(G,R),
and therefore the respective compositional model is

κ̄(S,G,R,W,P ) = µ1(S) . µ2(S,G) . µ3(S,R) . µ4(G,R,W,P ).

Notice, that this generalization violates condition (2), and that it does not
correspond to any causal graph. Here we would have to consider a generalization
of such graphs allowing them to contain also indirected edges (see Figure 2).
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Appendix

To show that

ν|i;a .
(
κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn(xn)

)

= ν|i;a . µ1(x1) . µ2(x2) . . . . . µn(xn)
(3)

we need two assertions that can be found in [2]:

Assertion. If the operators of composition in the formulas below are defined
then

1. (π1(y1) . π2(y2))
↓y1 = π1(y1);

2. if y2 ⊇ y1 ∩ y3 then π1(y1) . π2(y2) . π3(y3) = π1(y1) . (π2(y2) . π3(y3)).

When computing ν|i;a .
(
κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn(xn)

)
, it is im-

portant to realize that both ν|i;a and κ↓Xi are distributions defined for the same
variable Xi. Therefore we can apply property 2 from Assertion getting

ν|i;a .

((
κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn−1(xn−1)

)
. µn(xn)

)

= ν|i;a .
(
κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn−1(xn−1)

)
. µn(xn).

The same idea can also be applied to a shorter sequence, which yields

ν|i;a .

((
κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn−2(xn−2)

)
. µn−1(xn−1)

)

= ν|i;a .
(
κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn−2(xn−2)

)
. µn−1(xn−1).

Thus, applying property 2 from Assertion n times we get that

ν|i;a .
(
κ↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn(xn)

)

= ν|i;a . κ
↓Xi(Xi) . µ1(x1) . µ2(x2) . . . . . µn(xn),

and to show the validity of the required equation (3) it is enough to apply
property 1 to the first operator of composition.
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Abstract

The conventional fuzzy programming approach to the portfolio selec-
tion problem may yield a concentrated investment solution due to the im-
plicit assumption of non-interaction among fuzzy coefficients. Two coun-
termeasures have been proposed: one is minimax regret model and the
other is the introduction of interaction. In this paper, we demonstrate
how much diversified investment solution is obtained by the combinations
of those two countermeasures.

1 Introduction

In fuzzy programming problems, it has been implicitly assumed that the fuzzy
coefficients are non-interactive. Because of this implicit assumption, a concen-
trated investment solution is frequently obtained to portfolio selection problems
with fuzzy coefficients by the conventional fuzzy programming approaches. To
cope with this problem, Inuiguchi et al. [1] proposed the minimax regret ap-
proach and showed that a diversified investment solution is obtained. On the
other hand, we can introduce the interaction among fuzzy coefficients to the
fuzzy portfolio selection problem. So far, several models treating the interac-
tion among fuzzy coefficients have been proposed. In this paper, we introduce
some models treating the interaction among fuzzy coefficients to the portfolio
selection problems. By numerical examples, we demonstrate the effect of the
introduction of interaction and the effect of minimax regret approach as well as
the effect of the combination.

2 Portfolio Selection with Fuzzy Coefficients

We treat the following portfolio selection problem with fuzzy return rates:

maximize γTx, sub. to eTx = 1, x ≥ 0, (1)
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where γ = (γ1, γ2, . . . , γn)T is a variable vector of return rates whose variation
range is represented by an n-dimensional fuzzy set C.

Assuming that all return rates are non-interactive one another, we can apply
the conventional fuzzy programming approaches. However, the solutions are
concentrated or semi-concentrated investment solutions [1]. Then, the following
minimax regret model:

minimize z,

sub. to max
c∈cl (C)1−α0

ci − cTx ≤ z, i = 1, 2, . . . , n, eTx = 1, x ≥ 0, (2)

is introduced to obtain a diversified investment solution [1]. As another way to
obtain a diversified investment solution is to introduce the interaction. Then,
some models to treat interaction among fuzzy coefficients without great loss of
the tractability have been proposed [2, 3]. In this paper, we consider scenario de-
composed fuzzy numbers and oblique fuzzy vector as models of interactive fuzzy
numbers and formulate the portfolio selection problem based on the minimax
regret approach.

3 Scenario Decomposed Fuzzy Numbers

The return rates of bonds are often influenced by the economic situation. Then
the estimated return rates of bounds can be different by the economic situation.
This kind of the estimated return rates can be represented by scenario decom-
posed fuzzy numbers proposed by Inuiguchi and Tanino [2]. In this approach,
the possible ranges of uncertain parameters which depend on the situation are
expressed by fuzzy if-then rules.

We may have a vague knowledge about the possible range of γ as the fol-
lowing k fuzzy if-then rules:

if s = sk then γ ∈ Ck, k = 1, 2, . . . , u, (3)

where s is a variable taking a value from {s1, s2, . . . , su}. s is called a scenario
variable and showing the situation. Ck = (Ck

1 , Ck
2 , . . . , Ck

n)T is a vector of
non-interactive fuzzy numbers. Namely, Ck has a membership function,

µCk(c) = min
(
µCk

1
(c1), µCk

2
(c2), . . . , µCk

n
(cn)

)
, (4)

and Ck
j is a fuzzy number such that [Ck

j ]h = {r | µCk
j
(r) ≥ h} is a bounded

closed interval, where µCk
j

is a membership function of a fuzzy number Ck
j . The

body of rules (3) shows a fuzzy relation between scenario variable s and possible
range of uncertain vector γ.

When we obtain the estimated range of scenario variable s as a fuzzy set S
showing a possible rage of s, the estimated fuzzy set C is obtained as

µC(c) = max
k=1,2,...,u

min (µS(sk), µCk(c), ) (5)
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where µS is a membership function of S. Inuiguchi and Tanino [2] considered
a continuous scenario variable. In the continuous scenario variable case, the
knowledge can be represented by a set of fuzzy if-then rules, “if s is in fuzzy set
Sk then γ is in fuzzy set Ck”. Let µk be the membership function of fuzzy set
Sk in the antecedent part of fuzzy if-then rules. For the sake of simplicity, we
assume

∑u
k=1 µk(s) = 1, ∀s. Then for s = s̄, the estimated range Cj(s̄) of the

return rate of j-th bond is defined by

Cj(s̄) =

u∑

k=1

µk(s̄)Ck
j . (6)

The extension principle is applied to calculate Cj(s̄). Let C(s̄) = (C1(s̄), . . . ,
Cn(s̄))T. The estimated fuzzy set C under a fuzzy set S showing a possible
realizations of s is obtained as

µC(c) = sup
s

min
(
µS(s), µC(s)(c)

)
. (7)

The fuzzy set whose membership function is defined by (3) and (7) is called
scenario decomposed fuzzy numbers.

Now let us investigate the possible range of a linear function value γTx with
scenario decomposed fuzzy numbers C with membership function defined by
(7). Let Y (x) and Y k(x) be fuzzy sets defined by membership functions,

µY (x)(y) = sup
{
µC(c) | cTx = y

}
, µY k(x)(y) = sup

{
µCk(c) | cTx = y

}
.
(8)

Namely, Y (x) shows the overall possible range of γTx while Y k(x) shows the
possible range of γTx when the possible range of γ is given by Ck.

Because the linearity of function is preserved in the extension principle, We
obtain the following relation between Y (x) and Y k(x):

µY (x)(y) = sup
s

min

(
µS(s), sup

r:µ(s)Tr=y

min
(
µY 1(x)(r1), . . . , µY u(x)(ru)

)
)

,

(9)
where r = (r1, r2, . . . , ru)T and µ(s) = (µ1(s), µ2(s), . . . , µu(s))T.

From (6) and the non-negativity of x, we obtain

NY (x)([z, +∞)) ≥ α0 ⇔ cl(Y (x))1−α0 ⊆ [z, +∞)

⇔ cl(Y k(x))1−α0 ⊆ [z, +∞), ∀s such that µS(s) > 1 − α0

⇔
n∑

j=1

u∑

k=1

µk(s)c̄L
jk(1 − α0)xj ≥ z, ∀s such that µS(s) > 1 − α0, (10)

where we define cl(Ck
j )α = [c̄L

jk(α), c̄R
jk(α)], k = 1, 2, . . . , u.

Now we describe the minimax regret model. We assume that the range of
scenario variable s is a subset of real line R, and S is a fuzzy number.
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In the same way as the calculation of a linear function value of scenario
decomposed fuzzy numbers, Problem (2) is reduced to the following linear pro-
gramming problem:

minimize q,

sub. to cR
ik(1 − α0)(1 − xi) −

n∑

j=1,j ̸=i

cL
jk(1 − α0)xj ≤ q, i = 1, 2, . . . , n,

k such that [S]1 ∩ [S]k ̸= ∅,

µ(s̄L(1 − α0))Tc̄R
i (1 − α0)(1 − xi)

−
n∑

j=1,j ̸=i

µ(s̄L(1 − α0))Tc̄L
j (1 − α0)xj ≤ q i = 1, 2, . . . , n,

µ(s̄R(1 − α0))Tc̄R
i (1 − α0)(1 − xi)

−
n∑

j=1,j ̸=i

µ(s̄R(1 − α0))Tc̄L
j (1 − α0)xj ≤ q i = 1, 2, . . . , n,

eTx = 1, x ≥ 0,
(11)

where c̄L
j (α) = (cL

j1(α), cL
j2(α), . . . , cL

ju(α))T and c̄R
j (α) = (cR

j1(α), cR
j2(α), . . . ,

cR
ju(α))T. s̄L(α) and s̄R(α) are defined by cl(S)α = [s̄L(α), s̄R(α)].

4 Oblique Fuzzy Vector

From the historical data, we may find a vague knowledge about a linear function
value of return rates of several bonds and the differences of two uncertain values,
e.g., γ1+2γ2+γ3 is about 1.3, γ4−γ5 is approximately 0.1, and so on. If we have
only n independent pieces of vague knowledge about the linear function values
of return rates of bounds, we can apply oblique fuzzy vector [3] to represent the
possible range of return rate vector.

Oblique fuzzy vectors are proposed by Inuiguchi et al. [3] and each of them
can express n independent pieces of vague knowledge about the linear function
values of uncertain values. A non-singular matrix shows the interaction among
uncertain parameters in an oblique fuzzy vector as a covariance matrix shows
in a multivariate normal distribution.

An oblique fuzzy vector C is defined by the following membership function,

µC(c) = min
j=1,2,...,n

µBj (d
T
j c), (12)

where µBj is a membership function of an L-L fuzzy number Bj = (bL
j , bR

j , βL
j ,

βR
j )LL and dj , j = 1, 2, . . . , n are vectors such that D = (d1, d2, . . . ,dn)T be a

non-singular real-valued n × n matrix.
Now let us investigate a minimax regret model. From Problem (2), we

consider linear function values

Ri(x) = ci − cTx =
n∑

l=1,l ̸=i

clxl + ci(1 − xi). (13)
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In the same way as we did for the calculation of linear function value of an
oblique fuzzy vector [3], we obtain for any α ∈ [0, 1),

cl(Ri(x))α =

[ ∑

j:ki
j
(x)≥0

b̄L
j (α)ki

j(x) +
∑

j:ki
j
(x)<0

b̄R
j (α)ki

j(x),

∑

j:ki
j
(x)≥0

b̄R
j (α)ki

j(x) +
∑

j:ki
j
(x)<0

b̄L
j (α)ki

j(x)

]
, (14)

where with letting d∗
ij be the (i, j) component of D−1, we define

ki
j(x) =

n∑

l=1,l ̸=i

d∗
ljxl + d∗

ij(1 − xi). (15)

b̄L
j (h) and b̄R

j (h) are defined by b̄L
j (h) = bL

j −βL
j L∗(h) and b̄R

j (h) = bR
j −βR

j L∗(h),
respectively. L∗ is defined by L∗(h) = sup{r ∈ R+ | L(r) ≥ h}.

Introducing y+
i = (y+

i1, . . . , y
+
in)T and y−

i = (y−
i1, . . . , y

−
in)T such that

ki
j(x) = y+

ij − y−
ij , y+

ij · y−
ij = 0, y+

ij ≥ 0, y−
ij ≥ 0, j = 1, 2, . . . , n, (16)

we obtain the following reduced linear programming problem:

minimize q,

sub. to

n∑

j=1

b̄R
j (1 − h0)y+

ij −
n∑

j=1

b̄L
j (1 − h0)y−

ij ≤ q, i = 1, 2, . . . , n,

xi = 1 −
n∑

j=1

dji(y
+
ij − y−

ij), i = 1, 2, . . . , n,

xl =
n∑

j=1

djl(y
+
ij − y−

ij), l = 1, 2, . . . , n (l ̸= i), i = 1, 2, . . . , n,

y+
ij ≥ 0, y−

ij ≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , n, eTx = 1, x ≥ 0,

(17)
where dij is the (i, j)-component of D. This problem can also be solved by
Bender’s decomposition method.

5 Numerical Examples

Example 1. As an example of scenario decomposed fuzzy numbers, we con-
sider a case where the possible range of return rates of five bonds in different
categories of industry estimated by the following fuzzy if-then rules:

• if s is small then the return rate vector γ is in a possible range C1,
• if s is medium then the return rate vector γ is in a possible range C2,
• if s is large then the return rate vector γ is in a possible range C3,

(18)
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Figure 1: Fuzzy sets small, medium and large and fuzzy set S

Table 1: Parameters of Cij

s i ci1 wi1 ci2 wi2 ci3 wi3 ci4 wi4 ci5 wi5

small 1 0.18 0.023 0.22 0.05 0.26 0.01 0.2 0.026 0.2 0.008
medium 2 0.25 0.023 0.22 0.014 0.19 0.013 0.16 0.005 0.14 0.004

large 3 0.3 0.03 0.18 0.015 0.18 0.0225 0.2 0.006 0.13 0.004

where fuzzy sets small, medium and large are triangular fuzzy numbers de-
picted in Figure 1. Ci, i = 1, 2, 3 are non-interactive fuzzy numbers whose
component Cij has the following type of membership function:

µCij (r) = exp

(
−

(r − cc
ij)

2

wij

)
. (19)

Parameters cc
ij and wij , i = 1, 2, 3, j = 1, 2, . . . , 5 are defined by the values in

Table 1. The estimated possible range S of scenario variable is a triangular
fuzzy number depicted in Figure 1.

Let α = 0.7. We obtain s̄L = 3.45 and s̄R = 6.36. From the necessity
fractile optimization model, we obtain the optimal solution shown in Table 2.
On the other hand, from the minimum regret model with α = 0.7, we obtain
the optimal solution shown in Table 2.

Comparing the solutions in Table 2, we observe that the solution of the
necessity fractile optimization model suggests the investment to bond whose
estimated return rates are small and their variations are small while the solution
to the minimax regret model suggests the investment to bond whose estimated
return rates are large and their variations are large. In the necessity fractile
optimization model, only the minimal return rates of bonds are used to estimate
the worst case and thus a pessimistic solution is obtained. On the other hand,
in the minimax regret model, the maximal return rates of bonds are also used to
estimate the worst regret and thus the solution is not very pessimistic. Finally,
we notes that the solutions are easily changed by a small change of parameters
because the five bonds are comparable.

Example 2. As an example of the oblique fuzzy vector, we consider a case
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Table 2: Necessity fractile optim. and minimax regret models - solution
Model x1 x2 x3 x4 x5 z/q

Necessity fractile 0 0 0.33456 0.54488 0.12056 0.07513
Minimax regret 0.42766 0.32750 0.22807 0.01677 0 0.210966

where D is given by

D =




1 7 −1.5 1 −6
0 20 20 10 3
0 0 0.5 3 3
0 0 0 3 2
4 0 6 −6.5 3




, (20)

and Bi, i = 1, 2, . . . , 5 is defined by membership function,

µBi
(r) = exp

(
− (r − bc

i )
2

si

)
, (21)

with parameters: bc
1 = 0.396, bc

2 = 11.194, bc
3 = 1.396, bc

4 = 1.078, bc
5 = 1.463,

s1 = 0.008, s2 = 0.0025, s3 = 0.0036, s4 = 0.0009, s5 = 0.006. In this case,

D−1 =




0.091265 −0.031943 −1.174707 1.742992 0.227184
0.170795 −0.009778 1.415906 −1.532757 −0.042699

−0.156454 0.054759 −1.129074 1.083442 0.039113
−0.052151 0.018253 −1.043025 1.361147 0.013038
0.078227 −0.027379 1.564537 −1.541721 −0.019557




(22)
and the membership function of marginal fuzzy set Ci0, i = 1, 2, . . . , 5 is ob-
tained as (19) with parameters: cc

10 = 0.25, cc
20 = 0.22, cc

30 = 0.2, cc
40 = 0.214,

cc
50 = 0.218, w10 = 0.022539, w20 = 0.022503, w30 = 0.014402, w40 = 0.012101,

w50 = 0.022501.
Applying the necessity fractile model with α = 0.7, we obtain an optimal

solution as y+
1 = 0, y+

2 = 0.015873, y+
3 = 0, y+

4 = 0, y+
5 = 0.024420, y−

1 = 0,
y−
2 = 0, y−

3 = 0, y−
4 = 0, y−

5 = 0. Then the optimal investment rate shares x is
obtained by




x1

x2

x3

x4

x5




= DT







y+
1

y+
2

y+
3

y+
4

y+
5




−




y−
1

y−
2

y−
3

y−
4

y−
5







=




0.097680
0.317460
0.463981

0
0.120879




.

On the other hand, applying minimax regret model with α = 0.7, we obtain an
optimal solution q, x = (x1, x2, x3, x4, x5)

T, Y + = (y+
ij) and Y − = (y−

ij) as

q = 0.440294, x = (0.159177, 0.328070, 0.043885, 0.061670, 0.407198)
T

,
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Y + =




0.154542 0 0 0.466399 0.171570
0.151061 0 1.287608 0 0.002029

0 0.034040 0 0.266643 0.052392
0.046613 0 0 0.471559 0.028141
0.106851 0 1.091117 0 0.013082




,

Y − =




0 0.037686 0 0 0
0 0.019275 0 1.248760 0

0.050390 0 0.229241 0 0
0 0 0.113644 0 0
0 0.020994 0 1.007853 0




.

We observe the difference between those solutions: the solution of the ne-
cessity fractile optimization model suggests large amounts of investment to x2

and x3 while the solution of the minimax regret model suggests large amounts
of investment to x2 and x5.

Finally to see the significance of the interaction, we solve the problem with
non-interactive fuzzy numbers having the marginal membership functions. Namely,
this problem can be seen as the problem discarding the interaction. We obtain
x = (0, 0, 0, 1, 0)T from necessity fractile optimization model, and

q = 0.4640220, x = (0.255508, 0.190326, 0.179810, 0.155279, 0.219077)T (23)

from the conventional minimax regret model. We observe the big differences of
solutions between problems with oblique fuzzy vector and with non-interactive
fuzzy numbers. In necessity fractile optimization model, while the solution to
the problem discarding the interaction suggests the concentrate investment on
the fourth bond, the solution to the problem taking care of the interaction sug-
gests no investment on the fourth bond. Similarly, in the conventional minimax
regret model, while the solution to the problem discarding the interaction sug-
gests the investment of more than 15% of the fund on the fourth bond, the
solution to the problem taking care of the interaction suggests the investment
of less than 7% of the fund. These facts show that the fourth bond is not very
attractive one if we consider the interaction among the return rates of five bonds.
Moreover, the distributions of the fund are significantly different between the
solutions of the two conventional minimax regret models. By these results, we
understand the significance of the interaction.
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Abstract

In AHP approach to multi-criteria decision problem, the relative im-
portance of alternatives is computed from preference matrices, which come
from experience and can possibly be inconsistent. Standardly, the pref-
erence vector is computed as the eigenvector of the preference matrix by
methods of linear algebra.

Alternative use of non-standard methods in tropical algebra is consid-
ered in this paper. Two most frequently used tropical algebras are the
max-plus and the max-prod algebra. The preference matrix will be pro-
cessed by the methods used in max-prod algebra. By max-prod algebra we
understand a linear structure on a linearly ordered set R of real numbers
together with the binary operations ⊕ = maximum and ⊗ = product,
similarly as the ordinary addition and multiplication operations are used
in the classical linear algebra. The operations ⊕ and ⊗ are extended
to matrices and vectors in a natural way. We should remark that the
max-prod algebra is isomorphic to max-plus algebra, with the operations
maximum and addition. The eigenvalue of a given max-plus or max-prod
matrix and the eigenvectors can be efficiently described by considering
cycles in specifically evaluated directed graphs.

Given preference matrix will be transformed by the tropical opera-
tions, until a steady state is reached. The eigenvector of the matrix then
describes the steady state preferences and respects all preference relations
contained in the original matrix.

Efficient algorithms for computing eigenvectors in the tropical algebra
are described. The method is illustrated by numerical examples and com-
pared with the linear algebra approach. The consistent and inconsistent
cases are considered.
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1 Introduction

Analytic Hierarchy Process (AHP) is a method developed for creating structured
models of multi-criteria decision problems. The method helps to find an alterna-
tive which suits best the given needs of the deciding person. Analyzing the set of
possible alternatives, the AHP method finds the one with the best rating, based
on the structure of the problem and given preferences. Saaty formulated the
principles of AHP in late 1970s [Saaty, 1980], and the method has been broadly
studied and applied in many cases since the time, [Dytczak & Szklennik, 2011,
Mls & Gavalec, 2009, Ramı́k & Perzina, 2010]. The method combines mathe-
matical and psychological aspects, starting with defining the structure of the
problem, then quantifying the relative preferences, computing the priorities and
finally computing the evaluation of all considered alternatives. First of all, the
multi-criteria decision problem is converted into a hierarchy of sub-problems
and each of the sub-problems is then independently analyzed. The criteria of
the sub-problems in the hierarchy may have very heterogeneous nature, they
may be precisely or vaguely defined, with crisp or fuzzy parameters, formal or
intuitive, etc. The relative preferences of heterogeneous criteria are then quan-
tified by human decision-maker using the ability to compare various aspects of
the problem. The decision maker systematically compares the criteria in pairs
and quantifies the relative importance either by available data or by intuitive
judgment. The relative preferences found by pairwise comparisons are then used
to compute weights (priorities) for every part of the hierarchy model. The eval-
uation computed for all decision alternatives then shows their relative strength
from the point of view of the entire problem. It is the advantage of AHP that
even considerably diverse criteria can be used in the model, and that not only
exact data but also human judgments can be applied to describe various aspects
of the problem, [Saaty, 1994].

Formally, AHP is expressed by matrices and matrix operations are used to
find and evaluate the best alternative:

Let A1, A2, .., An be a set of variables. The quantified judgments on pairs of
variables Ai, Aj are represented by an n× n matrix A = (aij), i, j = 1, 2, ..., n.
Entries aij are defined as follows: if aij = a, then aji = 1/a; a 6= 0 for all i, j.
As Ai is considered to be of equal relative intensity to itself, then aii = 1 for all
i.

A =




1 a12 · · · a1n
1/a12 1 · · · a2n
· · · · · · · · · · · ·

1/a1n 1/a2n · · · 1




Then, relative rankings of variables will be obtained by computing an eigenvec-
tor X of the matrix A.

AX = λX

Finally, by matrix multiplication of matrices of relative rankings of criteria and
alternatives relative rankings matrix, total ranking of particular alternatives is
obtained.
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2 Max-Prod algebra

In this paper we work with preference matrices in the multiplicative form. It
is natural, therefore, to process the preference matrix in the max-prod algebra.
By max-prod algebra we understand a linear structure on a linearly ordered
set R of real numbers together with the binary operations ⊕ = maximum and
⊗ = product, similarly as the ordinary addition and multiplication operations
are used in the classical linear algebra. The operations ⊕ and ⊗ are extended
to matrices and vectors in a natural way. We should remark that the max-
prod algebra is isomorphic to max-plus algebra, with the operations maximum
and addition. The eigenvalue of a given max-plus or max-prod matrix and
the eigenvectors can be efficiently described by considering cycles in specifically
evaluated directed graphs.

The eigenproblem in the max-prod algebra (R,⊕,⊗) can be formulated as
follows. Given matrix A ∈ Rn×n, find λ ∈ R and X ∈ Rn such that

A⊗X = λ⊗X

It is a well-known fact that the eigenvalue λ can be computed as the maxi-
mal geometric cycle mean in the complete directed graph G(A) with n nodes,
in which the edges are evaluated by the matrix inputs, e.i. the weight of
the edge (i, j) is w(i, j) = aij for every i, j. If C = (v0, v1, v2, . . . , vk) with
v0 = vk is a cycle of length k > 0 in G(A), then the weight of C is the value

w(C) =
∏k

i=1 w(vi−1, wi), and the geometric cycle mean w(C) = w(C)1/k,
[Ramı́k & Korviny, 2010]. Hence λ = max

C cycle in G(A)
w(C). The maximal

geometric cycle mean can be computed in O(n3) time be slightly modified Karp’s
method, see [Karp, 1978].

When the eigenvalue λ has been computed, then we denote B = A ⊗ λ−1

and compute the matrix B? = I ⊕B ⊕B2 ⊕ . . .⊕Bn−1, which is called Kleene
star. The columns of the Kleene star matrix with diagonal value 1 are the
fundamental eigenvectors of B with eigenvalue value 1, and they are also the
eigenvectors of the original matrix A with eigenvalue λ.

3 Matrices

Consistent matrix is a form of preference matrix where the following conditions
are satisfied.

1. aii = 1

2. aij = 1/aji

3. aij ∗ ajk = aik

It should be remarked that Kleene star matrix B? = (A⊗λ−1)? is consistent.
Conversely, if a preference matrix A is consistent, then it is equal to its Kleene
star matrix, moreover, all eigenvectors are multiples of each other. Thus, for
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a consistent matrix there exists only one fundamental eigenvector, which gives
the priority vector, after normalization.

For an inconsistent matrix A the priority vector is found in the following
steps.

1. Find the eigenvalue λ of matrix A. The eigenvalue is maximal geometric
mean weight of cycle in the corresponding graph, computation is done by
the modified Karp’s algorithm

2. Converte A into matrix B = A⊗ λ−1 to get the eigenvalue equal to one.

3. Compute the Kleene star matrix B? = I⊕B⊕B2⊕. . .⊕Bn−1, a consistent
matrix.

4. Normalize the fundamental eigenvector, any column from B?. The nor-
malized column is the priority vector.

4 Example

The example was published in [Gavalec & Tomášková] and is based on an actual
problem: how to choose a conference for presentation of research results. We
prepare a 4 attributes and 3 alternatives, as is shown in a picture bellow.

Figure 1: Hierarchy graph

The problem is situated as a way, how to choose a conference. We defined a
four levels

• Locality - exotic, holiday areas, etc.,
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• High level of acceptance,

• Impact factor - means the outputs of the conference, from nonindexed
proceedings to journal with impact factor,

• Aim - if the conference is very close to my work.

We anonymised the conference, but there is a list of short information which
will described the instance.

Conference 1 is located on very interesting places, in most cases oceanic
places, the level of acceptance is almost 95%, the outputs have almost
zero value for current scientific scoring system, the conferences are wide,
with many scientific areas.

Conference 2 is located on interesting places, not necessary close to ocean,
the level of acceptance is high in case of not so wide target scientific pop-
ulation. The outputs have moderate importance, but the level of papers
and discussions on the conference allows you to prepare a journal paper.
The aim is very close.

Conference 3 is located at normal places and it is easy to travel on it. The
level of acceptance is higher. The outputs of the conference are indexed
in required databases and the aim is close.

In the example are used two programs Criterium Decision Plus and our
LibNOM working with the extremal algebra max-prod.

Both approaches use a pairwise comparisons, where the priorities will be
derived from a series of measurements: pairwise comparisons involving all the
nodes. The nodes at each level will be compared, two by two, with respect to
their contribution to the nodes above them. The results of these comparisons
will be entered into a matrix which is processed mathematically to derive the
priorities for all the nodes on the level.

Intensity of Importance Definition
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance

Locality matrix has a λ = 1.1587.
High level of acceptability matrix has a λ = 1.3867.
Impact factor matrix has a λ = 1.3867
Aim matrix has a λ = 1.1587 .

Loc =




1 7 9
1/7 1 2
1/9 1/2 1


 HLA =




1 9 8
1/9 1 1/3
1/8 3 1
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IF =




1 1/9 1/8
9 1 3
8 1/3 1


 Aim =




1 1/9 1/7
9 1 2
7 1/2 1




Loc HLA IF Aim Criteria

Crit.Des.




0.793
0.131
0.076






0.798
0.064
0.138






0.052
0.648
0.300






0.057
0.597
0.346







0.051
0.282
0.526
0.141




LibNOM




0.7928
0.1312
0.0760






0.7978
0.0639
0.1383






0.0519
0.6484
0.2997






0.0572
0.5969
0.3458







0.0524
0.2857
0.5191
0.1428
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Abstract

The objective of the paper is to present the agent-based model of
roundabout. The model is implemented in NetLogo - agent-based pro-
gramming language with integrated modeling environment. Agents cor-
respond to drivers. Each driver has got its own parameters and behavior.
The behavior is based on multi-criteria decision making. Driver has to
be careful and make many decisions during driving by the crossing or the
roundabout. Decision of the driver can be expressed using the analytic
hierarchy process.

There are few types of similar drivers however each driver has its own
parameters. Ratio of the driver’s types can be changed by the control
elements and the impact of this change on the fluency of the traffic can
be explored.

Research is based on a real traffic problem. In the city Hradec Kralove
is a roundabout instead of the heavily used crossing planned to be built.
Model of the roundabout is created due to the size and layout of the
planned building. Traffic density can be changed by the control elements
and it enables to explore different traffic situation and compare advantages
and disadvantages of the current crossing with the planned roundabout.

1 Introduction

Agent-based simulations help to explore complex systems and in some cases also
predict behavior of whole system after interferences. One of the problems which
can be explored by agent-based simulation is traffic problem.[1] Our project is
based on a real traffic problem in city Hradec Kralove in Czech Republic. Two
roundabouts instead of the heavily used crossing are planned to be build. We
would like to explore impacts of this change on the traffic situation in this
location. Due to different types of experiments which we would like to conduct
we have decided to create our own simulation instead of using one of the existing
programs. Simulation is created in the programming environment NetLogo.[2]
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Figure 1: Visualization of the planned system of two roundabouts

2 Agent-based model

Each car with driver is in our simulation represented by an agent. There are a
lot of parameters of each car such as maximal speed of the car or acceleration
as well as characteristics of the driver such as tendency to go fast. There are
few different types of vehicles except normal cars there are for example trucks
or ambulances. Each agent has destination point which is trying to reach by
driving through the simulated area. Agents behave due to traffic rules. Logic
of the driving is based on heading to the waypoints.

There are six types of waypoint:

• Entering the area near roundabout - agent should decrease its speed

• Start of roundabout - agent has to decide here whether enter the round-
about or wait

• End point of entrance to the roundabout - agent changes type of his move-
ment due to algorithms created for moving on the roundabout.

• Exit - is the waypoint near the exit of the roundabout and contains in-
formation about destinations in the direction of this exit. If waypoint
contains information about drivers destination, driver leaves the round-
about through this exit.

• Destination - this waypoint shows driver that he reached his destination.
Statistics about this agent are saved and then is agent removed from the
simulation.

• Tunel - This waypoint doesnt affects agents behavior. If the agent reaches
this waypoint car starts to be invisible for other agents as well as for user.
Car becomes visible as it reaches the other tunel mark.
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Figure 2: Simulation

3 Driver’s decision making

In a real life a lot of different factors affects drivers decision making process.
Driver has to watch carefully his surroundings and due to the aquired informa-
tion make a decision. Each driver can percive information in a different way.
In an agent-based simulation each agent has its sensors which enables to aquire
information from the surroundings. Advantage of the agent simulation is that
new sensors can be added easily and each agent can process information and
decide autonomously. We have decided to use analytic hierarchy process (AHP)
in agents decision making process.

3.1 AHP

Principles of AHP were formulated by Saaty in late 1970s [3]. This method
helps to create structured models of multi-criteria decision problems. Problem
is divided into the sub problems and each sub problem is analyzed separately.
There can be many criteria connected to the decision making process. To cre-
ate ranking of these criteria pair-wise comparison is used. Every two criteria
are compared and relative importance of each is set. Result values are in the
comparison matrix A.

In AHP approach an nxn pair-wise comparison matrix A (criteria matrix)
with positive elements aij is considered [4](Mls, 2013)

A =




1 a12 . . . a1n
a21 1 . . . a2n
...

...
. . .

...
an1 an2 . . . 1
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This matrix is reciprocal, so aij = 1/aji for each 1 ≤ i, j ≤ n. Normalised
principal eigenvector of the matrix A is computed to get priorities of respective
alternatives. We say that A is consistent, if aij ×ajk = aik for each 1 ≤ i, j, k ≤
n.. If aij × ajk 6= aik for some i, j, k, than A is said to be inconsistent. In AHP,
it is assumed that 1/9 ≤ aij ≤ 9., for all 1 ≤ i, j ≤ n. The inconsistency of A is
measured by the consistency index CIn defined as

CIn =
λmax − n
n− 1

where λmax is the principle eigenvalue of A. If A is an nxn positive reciprocal
matrix, then A is consistent if CIn = 0. Inconsistency index is discussed also in
[5] .

By computing an eigenvector X of the matrix A relative rankings of variables
can be obtained.

AX = λX

Final ranking of particular alternatives is computed as matrix multiplication of
eigenvector of X and matrix describing possible alternatives.

Many factors affect driver’s decision. In our previous basic model of the
traffic only proximity to the other car on the roundabout arbitrates driver’s
actions. All other factors which in a real life influence driver’s decision were
neglected. Driver, as he reaches start of roundabout mark, has to decide if he
wants to enter the roundabout or wait. There was a simple rule: if is distance
to the other car (which is already on the roundabout and can cross driver’s
trajectory) smaller than a safe distance (set in the start of the model) driver
waits and do not continue in his driving. Agent based model was extend by
multi-criteria decision making.

Each driver has its own criteria matrix and in the moment, he is deciding
about his next action, situation vector is created. Using the decision making
process, described below, driver chooses the action which should be best for
him. Our model is presented on the following example. Number of criteria can
increase as well as situation vector can be more comprehensive.

4 Example

Simulation created in NetLogo allows us to obtain a lot of information about
drivers status and its surroundings. Some of the information which is possible
to obtain is number and speed of other cars, proximity to crossing, proximity
to other car etc. Based on this information driver can decide about his next
action.

4.1 Criteria matrix

Criteria matrix is based on the attributes of drivers. Criteria matrix consists of
the 3 criteria - number of the criteria will increase while the model is extended.
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Driver’s character is divided into two parts. Driver can be patient or impatient
and experienced or inexperienced - see fig.2.

Criteria matrix consists of:

• Proximity: In this criterion, reaction on the car which is already on the
roundabout and can cross driver’s trajectory is described. Cautious drivers
tend to stop if the other car is approaching. In contrast to rude drivers
who will in the same situation continue driving or increase their speed.
Proximity is very important for inexperienced drivers.

• Rush: This criterion shows if the driver is in a hurry. This criterion is
important for impatient drivers.

• Environment: Expresses caution of the drivers if weather conditions and
conditions of the road are not good. For inexperienced drivers is this
criterion important.

Figure 3: Driver’s attributes

4.2 Situation vectors

Situation vector, written as [stop; go normal; go fast], represents current situ-
ation of the driver. There are three types of situation vectors in our example:
environment vector, rush vector and proximity vector. Vector doesn’t describe
driver’s character, it only describes his current situation and is recommendation
how to behave.

4.2.1 Environment

At the begging of the simulation random environment status is generated. In
our example environment status is static for the entire simulation. The future
enhancements will include the possibility of modifying the environment status,
which is going to enable other scenarios such as alternation of day and night or
changing of the weather.
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4.2.2 Proximity

Based on the proximity of the other car on the roundabout this vector is created.
If the other car is far, driver can continue driving and enter the roundabout.
If other car is near, driver should increase his speed and enter the roundabout
fast or can also stop and wait.

4.2.3 Rush

As the agent is created, his rush vector is generated. This vector represents how
this particular driver hurries. It doesn’t tell anything about how driver behaves
if he is in a hurry.

4.3 Final decisions

While driver approaching to the roundabout he has to choose from three possible
actions. Decision depends on driver’s character (criteria - comparison matrix)
and the current situation on the roundabout. In previous section driver’s cri-
teria matrix and situation vector has been introduced. Possible actions are
to continuing driving normally, stopping or increasing speed and enter quickly
the roundabout. Result of the computation is final, driver will do the most
recommended action.

4.3.1 Computation

Driver is entering to the simulated area and his criteria (comparison) matrix
A(nxn) and eigen-vector x, where the xi respresents the input of i−th row, of
this matrix is created. While is driver deciding about his next action, situation
column vectors v(i), where the i is a number of type of the situation, i = 1 to
n, are created. The column inputs of result matrix B are created as: for every
j from 1 to n and for every i from 1 to n : Bj = v(i) ∗ xi hold true. Column
vector s(j) : j = 1..n, for final decision f is

∑
for every i from 1 to n of bij .

5 Experiment

One of many possible settings of the model is shown in this experiment. We have
decided to have two types of drivers. First type is patient and inexperienced
driver and second type is impatient and experienced driver. For this example,
criteria matrices have been chosen as following:

Patient and inexperienced
Proximity Rush Environment

Proximity 1 8 2
Rush 1/8 1 1/7

Environment 1/2 7 1
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Impatient and experienced
Proximity Rush Environment

Proximity 1 2 2
Rush 1/2 1 2

Environment 1/2 1/2 1

Situation vector is created as [stop] [normal] [fast] (sum is equal to 1) in the lines
of following matrices. Appropriateness of each action (stop, go normal, go fast)
depends on the current situation. For example in table ”Proximity vectors”: if
other cars proximity is moderate it is appropriate to stop and do not enter the
roundabout or increase speed and enter it fast before other car can cross our
trajectory. It is not appropriate to enter the roundabout normal speed because
there is a bigger chance of crash.

Proximity vectors
Stop Normal Fast

Far 0,05 0,8 0,15
Moderate 0,7 0 0,3

Small 1 0 0

Rush vectors
Stop Normal Fast

Far 0 0,3 0,7
Moderate 0,2 0,4 0,4

Small 0.3 0,7 0

Proximity vectors
Stop Normal Fast

Far 0 0,5 0,5
Moderate 0,3 0,5 0,2

Small 0,5 0,4 0,1

5.1 Results

Each setup was run for ten times and results are average values. Impact of
the environment status has been tested on patient-inexperienced drivers and
impatient-experienced drivers. Environment status has been set to bad, mod-
erate and good. Rush status has been set to moderate for all of the drivers.

All drivers do not risk getting fast to the roundabout if the environment is
not good. Experienced and impatient drivers made decision go fast in 5.5% of
decision making situations in a good environment. Results of driver’s decisions
can be seen in the following table.

Drivers decisions
Fast Normal Stop

Patient and inexperienced 0% 6% 94%
Impatient and experienced 7% 28% 65%
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6 Conclusion

Agent based model of the roundabout containing agents using multi-criteria
decision has been introduced. Model is prepared for the discussion about setting
different types of drivers and their criteria matrices. Model enables to gain a
lot of information from the surroundings of the agent which can be used for
decision making. New features will be added such as a changing of day and
night or changing of the weather which affects driving conditions. Condition of
the vehicle can be also considered in the decision making process. Agent based
simulation can also provide useful information about problematic locations and
creation of the traffic jams on the crossings and roundabouts.
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Abstract

This paper studies the location, allocation and capacity design of emer-
gency medical centers (EMC) in a given region under the closest assign-
ment rule. It is assumed that the capability, initial capacity, and cost as-
sociated with unit increase in the capacity of treating various categories of
treatable medical diseases are provided for each candidate medical center.
Once a candidate center is selected, it will receive subsidies from the gov-
ernment to support the offering of medical services. It is further assumed
that the number of patients occurring at each patient group node during
a unit time is known along with the categories of their diseases. With
the objective of minimizing the total subsidies paid, we select EMCs from
among the candidates and also determine the desirable level of capacity in
each category of the diseases subject to a minimum desired survival rate
constraints. The CPLEX version 12.1 solver is used to obtain an optimal
solution.

1 Introduction

1.1 Background

A medical emergency is an injury or illness that is acute and poses an immedi-
ate risk to a person’s life or long term health. For emergencies starting outside
of medical care, two key components of providing proper care are to summon
the emergency medical services and to arrive at an emergency medical center
where the necessary medical care is available. To facilitate this process, each
country provides its own national emergency telephone number (c.f., 911 in the
USA, 119 in Korea) that connects a caller to the appropriate local emergency
service provider. Appropriate transportation, such as an ambulance, will be dis-
patched to deliver the emergency patient from the site of the medical emergency
to an available emergency medical center. A flow chart depicting the Korean
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Figure 1: Flowchart of Emergency Medical Information Center

emergency medical procedure is provided in Figure 1; it is from the National
Emergency Medical Center of Korea. Initially, the victim(s) or a first respon-
der calls 119 to request emergency medical service. An ambulance will then
be dispatched to the scene. When an ambulance arrives to the scene, on-scene
treatment is first performed, followed by transportation of the patient(s) to an
emergency medical service facility. During transport, information on the pa-
tient’s condition may be communicated to the emergency medical information
center. Inter-facility ambulance transport may be conducted if the patient(s)
should be treated at different facilities. According to statistics from the Korean
government, the mortality rate of emergency patients has increased continuously
from 2009 through 2012. One of the major factors causing this trend is an in-
crease in the duration of time between emergency events and time-of-treatment.
The connection is simple: emergency medical conditions are time-critical events.
Two major factors contribute to the increase in this time-to-treatment duration.
First is an increase in the time from the request of an ambulance to the arrival
of the vehicle. Second is an increase in the time from arrival of the ambulance
to delivery of the patient to an appropriate emergency medical center. In this
paper, we study the facility location problem in an effort to reduce the second
factor. Transport time of patients is largely dictated by the distance of the
nearest emergency medical center with the capability to treat the appropriate
category of treatable medical disease and sufficient capacity of medical staff to
do so. The capability and capacity varies by medical center. A mathematical
model is developed with the objective of minimizing the amount of subsidies
the government expends. We select emergency medical centers from among
candidate centers and determine desirable level of capacity in each category of
the diseases subject to minimum desired survival rate constraints and the clos-
est capable facility assignment rule. We use CPLEX version 12.1 to obtain an
optimal solution of the model. Simulation studies are conducted to assess the
quality of the solution suggested by our deterministic model in the context of
more realistic stochastic problem situations.

Location, Allocation and Capacity Design for Emergency Medical Centers

108



1.2 Literature Survey

Since emergency medical centers provide a critical life-saving service, they have
been studied for several decades. The typical approaches to locate emergency
medical centers include use of the set covering problem and the maximal cov-
ering problem. The set covering problem seeks to position the least number
of facilities while covering all points of demand subject to certain distance or
time constraints. In 1971, Toregas et al.[12] presented a linear programming
set covering problem for locating emergency service facilities. Daskin and Stern
[4] presented a hierarchical objective set covering problem for emergency medi-
cal services in order to find the minimum number of vehicles that are required
to cover all demand areas while simultaneously maximizing multiple coverage.
Church and Revelle [2] and White and Case [14] developed a maximal covering
location problem that does not require full coverage to all demand points. In-
stead, the model seeks the maximal coverage with a given number of facilities.
Another important metric to measure the effectiveness of facility location is the
average (total) distance between demand points and facilities. To address this
issue, the P -median location model has been applied for locating emergency
medical centers. The P -median problem was introduced by Hakimi [6] and de-
termines the locations of P facilities in order to minimize the average (total)
travelling distance between demand points and facilities. Carbone [1] suggested
a P -median model with the objective of minimizing the travelling distance be-
tween users and facilities such as medical or day care centers. Paluzzi [11]
discussed and tested a P -median based heuristic location model for siting emer-
gency service facilities in Carbondale. Jia et al. [7] analyzed the characteristics
of large scale emergencies and proposed a P -median location model for emer-
gency facilities. Several researchers have proposed facility location problems
which guarantee high accessibility via closest assignment constraints. Closest
assignment constraints force demands to be served by the nearest open facility.
Church and Roberts [3] introduced a public sector location model to maximize
the total public benefit which was assumed to be a function of the demand pop-
ulations and their proximity to a facility. The demand nodes were assigned to
a closest facility to obtain the highest public benefit. Recently, Kim and Kim
[8] employed closest allocation constraints to determine the locations of public
long term care facilities. They considered uncapacitated long term care facilities
of a single type and tried to balance the numbers of patients assigned to the
facilities. In addition to the concepts of coverage and travelling distance, an im-
portant measure for locating emergency medical centers is survival rate. Erkut
et al. [5] introduced the concept of using a survival function to evaluate the
performance of the covering facility location models with a focus on emergency
medical service systems. Mclay and Mayorga [9] also proposed a methodology to
evaluate the performance of emergency medical service systems using a survival
probability function which is piecewise in the distance to the facility.

Young Dae Ko, Byung Duk Song, Hark Hwang

109



2 Mathematical Formulation

2.1 Problem description

We now describe the nature of the problem in this study. In a given region,
there are I patient group nodes each exhibiting up to K categories of treatable
emergency diseases. There are J candidate medical centers with given initial
capacity and cost associated with unit increase of capacity in treating various
categories of treatable medical diseases. The capacity of each candidate facility
and unit capacity incremental cost are not necessarily identical. From among
these facilities, we will determine which will be declared as government spon-
sored emergency medical centers (EMCs) along with their desired capacities.
The selected centers will receive subsidies from the government in order to keep
the medical services competitive. The required amount of subsidies may be dif-
ferent among the centers and affected by the amount of capacity increased. It
is further assumed that the number of patients occurring at each patient group
node during a unit time is known along with the categories of their diseases.
The survival rate of patients is expressed as a function of patient transporta-
tion time and category of disease. Through the development of a mathematical
model, we will select from among the candidate centers which are to be declared
as government sponsored. The objective function is to minimize the government
subsidies expended.

2.2 Assumptions

1. J existing hospitals are considered as candidates to be declared as gov-
ernment sponsored EMCs. Their locations are known.

2. There are K types of treatable medical diseases that each emergency med-
ical center may have the capacity to serve.

3. There are I patient group nodes.

4. Initial capacity of each candidate center to serve a treatable medical dis-
ease (in units of man-hours) is known and they are not necessarily identi-
cal among candidate centers. The capacity can be expanded to a certain
extent by an additional amount of government subsidies. In this case,
unit capacity expansion cost is known which may not be the same among
candidate centers and disease categories.

5. The man-hour required to treat an incoming emergency patient is depen-
dent on the disease category and capability of candidate center.

6. The expected number of emergency patients with disease k at patient
group node i can be expressed as the product of its population (pi) and
the occurrence ratio (oik) per unit time of emergency disease k.

7. Patients with disease k at node i are served by the nearest possible emer-
gency medical center with the capacity to do so.
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8. The elapsed time from the request of an ambulance to the arrival of the
vehicle is ignored.

9. A minimum target survival rate is prescribed for patients with disease k.

2.3 Notations

• i : Index for patient group node, i = 1,2,...,I

• j : Index for candidate medical center, j = 1,2,...,J

• k : Index for category of treatable medical disease, k =1,2,...,K

• cj : Amount of governmental subsidy required for maintaining initial ca-
pacity by candidate center j

• cjk : Amount of governmental subsidy required by candidate center j for
a unit capacity expansion to treat disease k

• Ljk : Capacity in [man-hour] of emergency medical center j for the treat-
ment of patients with category k disease

• dij : Distance between patient group node i and medical center j

• hjk : Treatment time required in [man-hour] for a patient with category
k disease at medical center j

• aik : Number of patients with category k disease in patient group node j
= pi x oik

• fk(dij) : Survival rate of group node i patient with category k disease
when served by candidate medical center j

• bjk : Initial capacity in [man-hour] for treating emergency patient with
category k disease at candidate medical center j

• ejk : Conversion factor: [man-hour] associated with one unit increase of
the treatment capacity for category k disease at candidate center j

• lujk : Upper limit on the capacity expansion units at candidate medical
center j for category k disease

• srijk : Survival rate of patient with category k disease in patient group
node i if the patient is treated in emergency medical center j

• srk : Minimum desired level of survival rate of category k patient

• tjk : Treatment capability of patient with category k disease at medical
center j. It will be equal to 1 if candidate medical center j can treat the
patient. Otherwise, 0.
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Figure 2: Survival rate functions for each disease type

• yj : Location decision variable. It will be equal to 1 if candidate medical
center in location j is selected as candidate medical center. Otherwise, 0.

• xijk : Allocation decision variable. It will be equal to 1 if patients with
category k disease in location i are served by candidate medical center j.
Otherwise, 0.

• ujk : Number of capacity expansion units at candidate medical center j
for category k disease (integer decision variables)

• MU : Monetary Unit

2.4 Survival rate function

Valenzuela et al. [13] developed a survival function to predict human life as a
function of two variables: collapse to cardiopulmonary resuscitation and collapse
to defibrillation intervals. In this study, we use the same general form as their
model to express the survival rate as a function of category of emergency disease
and transportation time of patient from patient group node i to the nearest
medical center j. Let dij and vij denote the distance and average velocity of
ambulance from location i to j, respectively. The survival rate function adopted
in this study is

fk(dij) = (ak + ebk·dij/vij )−1 (1)

Note that ak characterizes the survival rate of patients with category k
disease and is chosen such that 1/(ak+1) is the probability of survival if they
receive immediate treatment, i.e., zero distance to the medical facility. The
parameter bk characterizes the decreasing survival rate of patients with disease
k as time passes. Figure 2 depicts the survival rate functions; they are dependent
on the transportation time of the patient as well as the type of disease.
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2.5 Mathematical formulation

Minimize

J∑

j=1

(cj · yj) +

J∑

j=1

K∑

k=1

(cjk · ujk) (2)

Subject to

J∑

j=1

xijk = 1 for all i, k (3)

xijk ≤ yj · tjk for all i, j, k (4)

J∑

j=1

dij · xijk ≤ dij +M(1− yj · tjk) for all i, j, k (5)

I∑

i=1

aik · hjk · xijk ≤ Ljk for all j, k (6)

bjk + ejk · ujk ≥ Ljk for all j, k (7)

ujk ≤ lujk for all j, k (8)

srijk = fk(dij) for all i, j, k (9)

J∑

j=1

srijk · xijk ≥ srk for all i, k (10)

yj ∈ [0, 1] for all j (11)

xijk ∈ [0, 1] for all i, j, k (12)

ujk is nonnegative integer for all j, k (13)

The objective function (2) of is to minimize the government’s subsidy to
emergency medical centers. It has two components, one for maintaining initial
capacities of emergency medical centers selected from among candidate medical
centers and the other for the compensation of capacity expansion encouraged.
Constraint (3) ensures that the patient group with category k disease in node i
can be assigned to only one emergency medical center (a patient group cannot
be split among centers). Constraint (4) ensures that patient group with category
k disease in node i can receive medical service from emergency medical center j
only if it has the capability to treat disease category k. Constraint (5) requires
that each patient group be assigned to the closest open emergency medical

Young Dae Ko, Byung Duk Song, Hark Hwang

113



center. Constraint (6) sees to it that the capacity of each emergency medical
center has to be sufficient enough to treat patients with disease category k
coming from the assigned patient nodes. Constraints (7) and (8) are for capacity
expansion. According to Constraint (7), the actual capacity of an emergency
medical center consists of an initial capacity and expanded capacity encouraged
by the government through subsidy and it has to be larger than the required
capacity. Constraint (8) represents the upper limit on the capacity expansion
units at candidate medical center j for category k disease. Constraints (9) and
(10) are related with the survival rate. Constraint (9) determines the survival
rate of patient group i with category k disease using the survival rate function
discussed in Section 2.4. Constraint (10) guarantees a minimum desired survival
rate of patients with category k disease. Finally, constraints (11) and (12)
restrict our location and allocation decision variables to be binary variables and
constraint (13) restricts capacity extension decision variables to be nonnegative
integer. To find an optimal solution of the proposed mathematical model, we
used CPLEX version 12.1. Since the model is an integer program, CPLEX
can generate a globally optimal solution. We carried out simulation studies
via Excel by generating stochastic occurrences of emergency patients. Based
on the results of the simulation, the solutions from CPLEX are evaluated to
determine whether or not the minimum desired level of survival rate at the
nearest emergency center can be satisfied. Also, the effects of stochastic data
on the system performance measures are examined.

3 Numerical Examples

The proposed model was tested with randomly generated data for 20 patient
demand nodes and 10 candidate medical centers in a (10km, 10km) area. We
consider K=3 categories of diseases. The number of patients with type k disease
was obtained by multiplying the population of each patient group node by the
occurrence rate of each type of disease, (oi1 = 0.005, oi2 = 0.008, oi3 = 0.012)
for each i. For the survival rate functions, the constants (a1, a2, a3) and (b1, b2,
b3) were set to (1, 0.3, 0.1) and (0.4, 0.2, 0.15), respectively. The transportation
velocity, vij , was set to 0.5km/minute and the minimum desired levels of survival
rate of category (sr1, sr2, sr3) were set to (0.071, 0.212, 0.307). The location,
population and number of patients at each patient group node were given as
shown at Table (1).

Table 2 lists additional system parameter values, ejk, lujk and hjk.
Also, the location, capacity and capability, unit capacity expansion cost and

amount of basic government subsidies required by each candidate medical center
are listed at Table 3.

With the above data, the mathematical model was solved using CPLEX
12.1. The numerical experiments were conducted on an Intel(R) Core(TM)2
Quad CPU Q8400, 2.66GHz and 4.00GB RAM personal computer. The op-
timal solution from CPLEX located emergency medical centers at candidate
centers 1, 3, 5, 7 and 9 with the government subsidy of 82,610 MU. It consists
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Table 1: The Parameter values for patient group nodes

P. g. Loc. x Loc. y Population Number of patients[person]
node (km) (km) [person] Disease 1 Disease 2 Disease 3

1 3.37 9.13 1,048 5 8 13
2 7.58 8.43 895 4 7 11
3 8.36 7.18 1,124 6 9 13
4 2.06 8.21 1,382 7 11 17
5 3.37 3.02 950 5 8 11
6 8.80 4.23 961 5 8 12
7 4.60 6.02 806 4 6 10
8 8.48 5.75 1,210 6 10 15
9 8.53 6.82 687 3 5 8
10 3.63 3.31 1,464 7 12 18
11 3.02 8.65 532 3 4 6
12 1.35 4.17 1,436 7 11 17
13 4.89 5.55 1,239 6 10 15
14 2.14 3.53 682 3 5 8
15 2.82 5.58 1,005 5 8 12
16 5.40 8.68 1,025 5 8 12
17 6.44 2.04 1,038 5 8 12
18 3.25 8.06 1,198 6 10 14
19 1.66 4.27 1,094 5 9 13
20 2.88 5.42 828 4 7 10

of 74,000 MU for keeping the initial capacities of emergency medical centers se-
lected and 8,610 MU for the capacity expansion. To satisfy the patient demand,
the capacity for the treatment of category 2 disease at emergency medical center
3 and the capacity for the treatment of categories 2 and 3 diseases at emergency
medical center 5 are increased by 1unit, 1unit and 2 units, respectively. And at
emergency medical center 5 the amount of idle capacities for categories 2 and 3
diseases are relatively low with 18 and 6.1 units, respectively. The result of the
numerical example is shown at Figure 3 and Table 4.

4 Conclusions

To provide a reference model for the location design problem of emergency
medical centers, this paper proposed a mathematical model reflecting the real
operating situation of emergency medical systems. In the model, we considered
the category of treatable medical diseases of each candidate medical center and
its capability. In reality, selected medical centers are provided with a certain
amount of subsidies from the government in order to keep the medical services
competitive. Also, we assumed that the government can encourage emergency
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Table 2: The parameter values for ejk, lujk and hjk

Candidate ejk lujk hjk
med. center k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

1 24 24 24 1 1 3 1.8 1.5 2.0
2 24 0 24 1 0 1 1.0 1.6 1.4
3 0 24 24 0 2 1 1.5 1.6 1.8
4 24 24 0 1 2 0 1.4 1.9 1.2
5 24 24 24 1 1 2 1.2 1.5 1.7
6 24 24 24 3 1 1 1.4 1.3 1.8
7 24 24 24 1 2 2 1.4 2.0 1.3
8 24 24 0 1 3 0 1.6 1.6 1.6
9 24 0 24 1 0 3 1.2 1.6 1.1
10 0 24 24 0 3 1 1.4 1.9 1.7

Figure 3: Locations for EMC

medical center to increase treatment capacity to some extent through the gov-
ernment subsidy. In the model patients are transported to the closest emer-
gency medical center where they can receive a required medical treatment. In
addition, the concept of minimum desired survival rate was considered. The
proposed mathematical model was solved using CPLEX. We hope that our re-
search results can be useful as guidance for government officials in charge of the
design of emergency medical system or other similar systems. At the present
time, we are studying simulation procedures to assess the performance of our
deterministic models in a stochastic context.
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Table 3: The parameter values for candidate medical centers

Location Initial/Maximum capacity [man * hour] Subs. for
id (km) and (unit expansion cost[MU]) init. capac.

x y Category 1 Category 2 Category 3 [MU]
1 6.02 8.11 72/96(1,300) 144/168(2,250) 144/216(1,800) 20,000
2 2.17 7.85 48/72(1,200) N/A 120/144(1,700) 15,000
3 4.41 8.39 N/A 72/120(2,550) 96/120(1,900) 11,000
4 7.21 2.10 48/72(1,400) 48/96(2,700) N/A 10,000
5 2.34 2.13 96/120(1,450) 72/96(2,560) 72/120(1,750) 15,000
6 2.81 2.10 24/96(1,380) 120/144(2,800) 96/120(1,650) 25,000
7 7.22 2.90 72/96(1,270) 120/168(2,670) 144/192(1,500) 16,000
8 5.82 9.83 48/72(1,390) 96/168(3,050) N/A 8,000
9 4.19 6.32 72/96(1,540) N/A 144/216(1,860) 12,000
10 7.87 6.70 N/A 120/192(2,390) 144/168(2,050) 13,000
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Abstract

In the paper we present basic concepts concerning credal networks and
compositional models for credal sets and describe the problem of impre-
cision increase in the first type of these models.

Keywords: Credal sets, credal networks, compositional models, strong
independence.

1 Introduction

The most widely used models managing uncertainty and multidimensionality
are, at present, so-called probabilistic graphical Markov models. The problem
of multidimensionality is solved in these models with the help of the concept
of conditional independence, which enables factorization of a multidimensional
probability distribution into small parts (marginals, conditionals or just factors).
Among them, the most popular are Bayesian networks. Therefore, it is not very
surprising, that analogous models have been studied also in several theories of
imprecise probability [1, 2, 3].

Credal networks are a generalization of Bayesian networks, able to deal with
imprecision. Compositional models for credal sets, on the other hand, are in-
tended to be generalization of compositional models for precise probabilities
[6, 7, 8]. As the equivalence between Bayesian networks and precise composi-
tional models is well known, it seems quite natural to ask a similar question also
in this, more general case.

Compositional models were introduced also in possibility theory [12, 13]
(here the models are parameterized by a continuous t-norm) and a few years
ago also in evidence theory [9, 10]. In all these frameworks the original idea is
kept, but there exist some slight differences among them.

Although Bayesian networks and compositional models represent the same
class of distributions, they do not make it in the same way. Bayesian networks
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use conditional distributions whereas compositional models consist of uncondi-
tional distributions. Naturally, both types of models contain the same informa-
tion but while some marginal distributions are explicitly expressed in compo-
sitional models, it may happen that their computation from a corresponding
Bayesian network is rather computationally expensive. Therefore it appears
that some of computational procedures designed for compositional models are
(algorithmically) simpler than their Bayesian network counterparts.

Furthermore, the research concerning relationship between compositional
models in evidence theory and evidential networks [14] revealed probably a more
important thing. Even though any evidential network (with proper conditioning
rule and conditional independence concept) can be expressed as a compositional
model, if we do it in the opposite way and transform a compositional model into
an evidential network, we may realize, that the model is more imprecise than
the original one. It is caused by the fact that conditioning increases imprecision.

The goal of this paper is twofold. First, we want to show that the operator
of composition can also be defined for credal sets (at least under specific condi-
tions). Second, we want to argue that it is worth-developing, as conditioning in
the framework of credal sets also increases imprecision.

The contribution is organized as follows. In Section 2 we summarize basic
concepts and notation. Definition of the operator of composition is introduced
in Section 3, where also its basic properties can be found. Finally, in Section 4
we recall the concept of credal networks and demonstrate how conditioning
increases imprecision of the resulting model.

2 Basic Concepts and Notation

In this section we will recall basic concepts and notation necessary for under-
standing the contribution.

2.1 Variables and Distributions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, each
Xi having its values in a finite set Xi and XN = X1 ×X2 × . . . ×Xn be the
Cartesian product of these sets.

In this paper we will deal with groups of variables on its subspaces. Let us
note that XK will denote a group of variables {Xi}i∈K with values in

XK =×i∈KXi

throughout the paper.
Having two probability distributions P1 and P2 of XK we say that P1 is

absolutely continuous with respect to P2 (and denote P1 � P2) if for any xK ∈
XK

P2(xK) = 0 =⇒ P1(xK) = 0.

This concept plays an important role in the definition of the operator of com-
position.
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2.2 Credal Sets

A credal setM(XK) about a group of variables XK is defined as a closed convex
set of probability measures about the values of this variable.

In order to simplify the expression of operations with credal sets, it is often
considered [11] that a credal set is the set of probability distributions associated
to the probability measures in it. Under such consideration a credal set can be
expressed as a convex hull of its extreme distributions

M(XK) = CH{ext(M(XK ))}.

Consider a credal set about XK , i.e. M(XK). For each L ⊂ K its marginal
credal set M(XL) is obtained by element-wise marginalization, i.e.

M(XL) = CH{P ↓L : P ∈ ext(M(XK))}, (1)

where P ↓L denotes the marginal distribution of P on XL.
Having two credal sets M1 and M2 about XK and XL, respectively (as-

suming that K,L ⊆ N), we say that these credal sets are projective if their
marginals about common variables coincide, i.e. if

M1(XK∩L) =M2(XK∩L).

Let us note that if K and L are disjoint, then M1 and M2 are projective,
as M(X∅) = 1.

Conditional credal sets are obtained from the joint ones by point-wise condi-
tioning of the extreme points and subsequent linear combination of the resulting
conditional distributions. More formally: Let M(XIXJ) be a credal set about
(groups of) variables XIXJ . Then for any xJ ∈ XJ

M(XI |xJ) = CH{P (XI |xJ) : P ∈ ext(M(XIXJ))}, (2)

is a conditional credal set about XI given XJ = xJ .

2.3 Strong Independence

Among numerous definitions of independence for credal sets [4] we have chosen
strong independence, as it seems to be the most appropriate for multidimen-
sional models.

We say that (groups of) variables XK and XL (K and L disjoint) are strongly
independent with respect toM(XK∪L) iff (in terms of probability distributions)

M(XK∪L) = CH{P1 · P2 : P1 ∈ ext(M(XK)), P2 ∈ ext(M(XL))}. (3)

Again, there exist several generalizations of this notion to conditional inde-
pendence, see e.g. [11], but since the following definition is suggested by the
authors as the most appropriate for the marginal problem, it seems to be a
suitable concept also in our case, since the operator of composition can also be
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used as a tool for solution of a marginal problem, as shown (in the framework
of possibility theory) e.g. in [13].

Given three groups of variables XK , XL and XM (K,L,M be mutually dis-
joint subsets of N , such that K and L are nonempty), we say analogous1 to [11]
that XK and XL are conditionally independent on the distribution given XM

under global set M(XK∪L∪M ) (in symbols K ⊥⊥ L|M) iff

M(XK∪L∪M ) = CH{(P1 · P2)/P
↓M
1 : P1 ∈ ext(M(XK∪M )),

P2 ∈ ext(M(XL∪M )), P ↓M
1 = P ↓M

2 } . (4)

This definition is a generalization of stochastic conditional independence: if
M(XK∪L∪M ) is a singleton, then also M(XK∪M ) and M(XL∪M ) are (projec-
tive) singletons and the definition collapses into definition of stochastic condi-
tional independence.

3 Operator of Composition and Its Properties

Now, let us start considering how to define composition of two credal sets. Con-
sider two index sets K,L ⊂ N . At this moment we do not put any restrictions
on K and L; they may be but need not be disjoint, one may be subset of the
other.

In order to enable the reader the understanding of this concept, let us first
present the definition of composition for precise probabilities [6]. Let P1 and P2

be two probability distributions of (groups of) variables XK and XL. Then

(P1 . P2)(XK∪L) =
P1(XK) · P2(XL)

P2(XK∩L)
, (5)

whenever P1(XK∩L)� P2((XK∩L). Otherwise, it remains undefined.
Let M1 and M2 be credal sets about XK and XL, respectively. Our goal

is to define a new credal set, denoted by M1 .M2, which will be about XK∪L

and will contain all of the information contained inM1 and as much as possible
of information of M2.

The required properties are met by Definition 12 in [15]. However, the
definition exhibits a kind of discontinuity and should be reconsidered. In this
paper we will deal only with the composition of projective credal sets.

Definition 1 For two projective credal setsM1 andM2 about XK and XL, a
composition M1 .M2 is defined by the following expression:

(M1 .M2)(XK∪L) = CH{(P1 · P2)/P
↓K∩L

2 : P1 ∈ ext(M1(XK)),

P2 ∈ ext(M2(XL)), P ↓K∩L
1 = P ↓K∩L

2 }.
1Let us note that our definition differs somehow from that presented in [11]: the authors

require point-wise satisfaction in (3) and (4), which leads to non-convexity. In [5] this type of
independence is called complete.

2Let us note that the definition was based on Moral’s concept of conditional independence
with relaxing convexity.
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The following lemma presents basic properties possessed by this operator of
composition.

Lemma 1 For two projective credal sets M1 and M2 about XK and XL, re-
spectively, the following properties hold true:

(i) M1 .M2 is a credal set about XK∪L.

(ii) M1 .M2 =M2 .M1.

Proof.

(i) To prove that M1 .M2 is a credal set about XK∪L it is enough to show
that any P ∈ {ext(M1 .M2)} is a probability distribution on XK∪L,
as the convexity of M1 .M2 is evident. But it is obvious, as any P ∈
{ext(M1 .M2)} is obtained via formula for composition of probability
distributions (5).

(ii) For any distribution P of {ext(M1 . M2)(XK∪L)} there exist

P1 ∈ {ext(M1(XK))} and P2 ∈ {ext(M2(XL))} such that P ↓K∩L
1 =

P ↓K∩L
2 and P = (P1 · P2)/P ↓K∩L

2 . But simultaneously (due to projectiv-

ity) P = (P1 · P2)/P ↓K∩L
1 , which is an element of (M2 .M1)(XK∪L).

Hence
(M1 .M2)(XK∪L) = (M2 .M1)(XK∪L),

as desired. ut
Let us now illustrate the application of the operator of composition and its

properties by two examples. The first shows what happens when K ∩ L = ∅.
Let use note the all variables in the examples in this paper are binary.

Example 1 Let
M1(X1) = CH{[0.2, 0.8], [0.7, 0.3]}

and
M2(X2) = CH{[0.6, 0.4], [1, 0]}

be two credal sets about X1 and X2, respectively. Then, as mentioned above,
M1(X1) and M2(X2) are projective, and therefore M1 .M2 is obtained via
Definition 1:

(M1 .M2)(X1X2) = CH{[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0],

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0]}.

It is evident, that not every element ofM1 .M2 can be expressed as a product
of its marginals, as e.g.

[0.41, 0.04, 0.39, 0.16] ∈ CH{[0.12, 0.08, 0.48, 0.32], [0.2, 0, 0.8, 0],

[0.42, 0.28, 0.18, 0.12], [0.7, 0, 0.3, 0]},

but [0.41, 0.04, 0.39, 0.16] 6∈ {P1 · P2 : P1 ∈M(XK), P2 ∈M(XL)}. ♦
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The following example is devoted to the case, when K ∩ L 6= ∅.

Example 2 Let

M1(X1X2) = CH{[0.2, 0.2, 0, 0.6], [0.1, 0.4, 0.1, 0.4],

[0.25, 0.25, 0.25, 0.25], [0.2, 0.3, 0.3, 0.2]}.

be a credal set about variables X1X2 and

M2(X2X3) = CH{[0.2, 0, 0.3, 0.5], [0, 0.2, 0, 0.8],

[0.5, 0, 0.5, 0], [0.2, 0.3, 0.2, 0.3]},

be a credal set about variables X2X3. These two credal sets are projective, as

M1(X2) = CH{[0.2, 0.8], [0.5, 0.5]} =M2(X2),

therefore Definition 1 can be applied:

(M1 .M2)(X1X2X3)

= CH{[0.2, 0, 0.075, 0.125, 0, 0, 0.275, 0.375], [0, 0.2, 0, 0.2, 0, 0, 0, 0.6],

[0.1, 0, 0.15, 0.25, 0.1, 0, 0.15, 0.25], [0, 0.1, 0, 0.4, 0, 0.1, 0, 0.4],

[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0], [0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],

[0.2, 0, 0.2, 0, 0.3, 0, 0.3, 0], [0.08, 0.12, 0.08, 0.12, 0.12, 0.18, 0.12, 0.18]}.

It can easily be checked that both (M1 .M2)(X1X2) =M1(X1X2) and (M1 .
M2)(X2X3) =M2(X2X3). ♦

The following theorem reveals the relationship between strong independence
and the operator of composition. It is, together with Lemma 1, the most im-
portant assertion enabling us to introduce multidimensional models.

Theorem 1 Let M be a credal set about XK∪L with marginals M(XK) and
M(XL). Then

M(XK∪L) = (M↓K .M↓L)(XK∪L) (6)

iff
(K \ L) ⊥⊥ (L \K)|(K ∩ L). (7)

Proof. Let us suppose that (6) holds. Since M1(XK) and M2(XL) are projec-
tive, Definition 1 can be applied and therefore

M(XK∪L) = CH{(P1 · P2)/P
↓K∩L

2 : P1 ∈M(XK),

P2 ∈M(XL), P ↓K∩L
1 = P ↓K∩L

2 }).

To prove (7) means to find for any P from M(XK∪L) a pair of projective
distributions P1 and P2 fromM(XK) andM(XL), respectively, such that P =
(P1 · P2)/P1

↓K∩L. But due to condition of projectivity, M(XK∪L) consists of
exactly this type of distributions.
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Let on the other hand (7) be satisfied. Then any P from M(XK∪L) can be
expressed as conditional product of its marginals, namely

P = (P ↓K · P ↓K)/P ↓K∩L,

P ↓K ∈M(XK) and P ↓L ∈M(XL). Therefore,

M(XK∪L) = {(P ↓K · P ↓K)/P ↓K∩L : P ↓K ∈M1(XK), P ↓L ∈M2(XL))},

which concludes the proof. ut

4 Credal Networks

A credal network [1] over XN is (analogous to Bayesian networks) a pair
(G, {P1, . . . ,Pk}) such that for any i = 1, . . . , k (G,Pi) is a Bayesian network
over XN .

The resulting model is a credal set, which is the convex hull of the Bayesian
networks, i.e.

CH{P1(XN ), . . . Pk(XN )}.
It is evident, that this definition looses the attractiveness of Bayesian networks,
where the overall information is computed from the local pieces of information.

The most popular (and also effective) type of credal networks are those
called separately specified. A separately specified credal networks over XN is a
pair (G,M), where M) is a set of conditional credal setsM(Xi|pa(Xi)) for each
Xi ∈ XN .

Here the overall model is obtained analogous to Bayesian networks as the
strong extension of the M(Xi|pa(Xi)), i ∈ N .

Nevertheless, the reverse side of this nice property is the imprecision increase
of this type models, as can be seen even from the following simple example.

Example 3 Let M(X1X2) be a credal set about variables X1 and X2 with
values in X1 and X2 (Xi = {xi, x̄i}), respectively, defined as in Example 2.

From its extreme points we obtain the following distributions:

P1(x2) = 0.2 P1(x1|x2) = 1 P1(x1|x̄2) = 0.25
P2(x2) = 0.2 P2(x1|x2) = 0.5 P2(x1|x̄2) = 0.5
P3(x2) = 0.5 P3(x1|x2) = 0.5 P3(x1|x̄2) = 0.5
P4(x2) = 0.5 P4(x1|x2) = 0.4 P2(x1|x̄2) = 0.6,

These are, together with the graph X2 −→ X1 four Bayesian networks.
Their convex hull is exactly the setM1(X1X2). Nevertheless, it is not separably
specified credal network. To obtain it we need the credal setsM(X2),M(X1|x2)
and M(X1|x̄2)

From the above values one will get the “extreme” points of M(X1|x2) and
M(X1|x̄2):

[1, 0], [0.5, 0.5], [0.5, 0.5], [0.4, 0.6],
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and
[0.25, 0.75], [0.5, 0.5], [0.5, 0.5], [0.6, 0.4],

respectively.
As [0.5, 0.5] is a linear combination of both [1,0] and [0.4,0.6], and [0.25,0.75]

and [0.6,0.4], the resulting (conditional) credal sets are

M(X2) = CH{[0.2, 0.8], [0.5, 0.5]},
M(X1|x2) = CH{[1, 0], [0.4, 0.6]},
M(X1|x̄2) = CH{[0.25, 0.75], [0.6, 0.4]}.

The strong extension of these credal sets is

˜M1(X1X2) = CH{[0.2, 0.2, 0, 0.6], [0.2, 0.48, 0, 0.32], [0.08, 0.2, 0.12, 0.6],

[0.08, 0.48, 0.12, 0.32], [0.5, 0.125, 0, 0.375],

[0.5, 0.3, 0, 0.2], [0.2, 0.125, 0.3, 0.375], [0.2, 0.3, 0.3, 0.2]}.

which is less precise than the original model. ♦

5 Conclusions

We introduced an operator of composition of projective credal sets — a general-
ization of that introduced about 15 years ago in (precise) probability framework.
The operator satisfies the basic properties necessary for the introduction of com-
positional models of credal sets. Nevertheless, the definition must be extended
to non-projective credal sets, which seems to be the most important problem to
be solved in the near future.

We also recalled the concept of credal networks and we suggested that com-
positional models of credal sets are potentially good counterpart of these models,
which are either not separately specified (contrary to our expectation concerning
compositional models), or more imprecise.
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Abstract

Clustering is a method to divide given data or a set of objects into
clusters such that similar objects are grouped in the same cluster and dis-
similar objects in different clusters. Similarity or dissimilarity of objects
are given by a predefined proximity measure. In this research, we focus
on data sets with nominal attributes, namely, we can only consider that
two values are equal or not. For nominal data sets, logical expressions
such as “attribute a equals to v” or “a is not less than v” are suitable to
describe clusters. To obtain clusters with simple expressions, we propose
a new proximity measure of clusters based on discernibility of clusters.
Moreover, we apply the proposed proximity measure to agglomerative
hierarchical clustering, and examine their characteristics by numerical ex-
periments.

1 Introduction

Clustering is a method to divide given data or a set of objects into clusters such
that similar objects are grouped in the same cluster and dissimilar objects in
different clusters. Similarity or dissimilarity of objects are given by a predefined
proximity measure.

Proximity measures are defined based on attribute values (descriptions) of
objects. Attributes can be divided to two types: numerical and nominal. In
basic clustering methods for data sets with numerical attributes, a proximity
measure for clusters of objects is given by our geometrical intuition, for example
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Euclidean distance. Therefore, representative of a clusters is naturally defined
by the centroid or the medoid of the cluster.

In this research, we focus on data sets with nominal attributes, namely, we
can only consider that two values are equal or not. For nominal data sets, logical
expressions such as “attribute a equals to v” is suitable to describe clusters.
However, clustering methods based on conventional proximity measures do not
necessarily output clusters of simple and compact logical expressions. Several
authors [4, 6, 3] have addressed to this problem.

In this paper, we propose a new proximity measure for pairs of clusters,
which directly reflect discernibility of clusters, where given an attribute subsets,
clusters are discernible if no pair of objects in different clusters has the same
profile on the attribute subset. First, we define an discernibility or indiscerni-
bility relation on clusters. Then, the proposed proximity measure is defined by
counting attribute subsets which can discern clusters. Using the fact that the
discernibility relation is closely related to Boolean algebra, we propose a method
to compute the proximity measure using Boolean formulas. Moreover, we apply
the proposed proximity measure to agglomerative hierarchical clustering, and
examine their characteristics by numerical experiments.

This paper organized as follows. In Section 2, we introduce several mate-
rials such as an information table, indiscernibility and disparateness relations,
hierarchical clustering, and Boolean functions, which is used in the following
sections. In Section 3, we propose a new proximity measure based on the indis-
cernibility and disparateness relations. Moreover, we propose a computational
method of the proximity measure. In Section 4, we conduct numerical experi-
ments to examine hierarchical clustering with the proposed proximity measure
comparing with single-linkage and complete-linkage. Concluding remarks are
given in Section 5.

2 Preliminaries

2.1 Information Tables and Indiscernibility and Disparate-
ness Relations

In this research, data sets are modeled by information tables. An information
table is defined by 〈U,AT, V 〉. U = {u1, u2, ..., un} is a finite set of objects.
AT = {a1, a2, ..., am} is a finite set of attributes. V is a set of attribute values.
Every attribute a ∈ AT is a mapping whose domain and range are U and Va,
respectively, where Va is the set of values which attribute a takes.

Given an attribute subset A ⊆ AT , if objects have the same attribute values
of A, then they are indiscernible to each other. The indiscernibility relation RA

with respect to A is defined by

RA = {(u, u′) ∈ U2 | ∀a ∈ A, a(u) = a(u′)}. (1)

Contrary, when (u, u′) 6∈ RA the pair u, u′ is said to be discernible, because at
least one of attributes in A can distinguish the pair. We define R∅ = U2. On the
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other hand, we define a disparateness relation SA with respect to A as follows:

SA = {(u, u′) ∈ U2 | ∀a ∈ A, a(u) 6= a(u′)}. (2)

The pair (u, u′) ∈ SA are completely different because no attribute in A takes
the same value for the pair. We define S∅ = U2.

These relations can be extended to relations on object subsets, conjunctively
or distinctively. Let P(U) be the set of all nonempty subsets of U . For an
attribute subset A ⊆ AT , they are defined as follows:

[R]A = {(X,Y ) ∈ P(U)2 | ∀(x, y) ∈ X × Y, (x, y) ∈ RA}, (3)

〈R〉A = {(X,Y ) ∈ P(U)2 | ∃(x, y) ∈ X × Y, (x, y) ∈ RA}, (4)

[S]A = {(X,Y ) ∈ P(U)2 | ∀(x, y) ∈ X × Y, (x, y) ∈ SA}, (5)

〈S〉A = {(X,Y ) ∈ P(U)2 | ∃(x, y) ∈ X × Y, (x, y) ∈ SA}. (6)

Obviously, (X,Y ) ∈ [R]A (resp. (X,Y ) ∈ [S]A) implies (X,Y ) ∈ 〈R〉A (resp.
(X,Y ) ∈ 〈S〉A). Additionally, when (X,Y ) ∈ [R]A, all objects in X or Y have
the same value v for each a ∈ A, namely, for any x, x′ ∈ X we have a(x) =
a(y) = v. Similarly, when (X,Y ) ∈ [S]A, the sets of all values for each a ∈ A in
X and Y does not have intersection, namely, {a(x) | x ∈ X}∩{a(y) | y ∈ Y } = ∅.
Especially when a is binary, i.e., Va = {0, 1}, all objects in X or Y have the
same attribute value for a. RA is related to definability of rough set theory [5].

Because relations [R]A and [S]A are too strict to use for proximity of clusters,
we use only 〈R〉A and 〈S〉A. For simplicity, we denote 〈R〉A and 〈S〉A by RA

and SA, respectively. Moreover, for an object pair u, u′ ∈ U , (u, u′) ∈ RA (resp.
(u, u′) ∈ SA) means ({u}, {u′}) ∈ 〈R〉A (resp. ({u}, {u′}) ∈ 〈S〉A).

2.2 Hierarchical Clustering

Hierarchical clustering groups objects by hierarchical classification which is a
series of partitions from a single cluster containing all of objects to all singleton
clusters of objects. A tree diagram representing the hierarchical classification
is called a dendrogram. Hierarchical clustering methods are divided into ag-
glomerative and divisive approaches. In this paper, we use the agglomerative
approach. The agglomerative approach successively merges objects into groups,
while a divisive method successively separates clusters into finer ones. To con-
duct the agglomerative hierarchical clustering, a proximity measure between
pair of nonempty clusters X,Y ⊆ U is needed. Several definition of proxim-
ity measures between clusters have been proposed, for instance single-linkage,
complete-linkage and so on.

A general procedure of the agglomerative hierarchical clustering is described
as follows. Now, we use dissimilarity measure d.

(1) Initial clusters are set to be the singleton clusters of objects: C1 =
{u1}, C2 = {u2}, ..., Cn = {un}.
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(2) Marge a pair Ci and Cj whose dissimilarity d(Ci, Cj) is minimum among
all pairs of current clusters, and rearrange the index.

(3) If all clusters are merged into one cluster then the procedure ends, other-
wise go to (2).

2.3 Boolean Functions

Boolean functions play a key role for computation of a proposed proximity
measure. A Boolean function is a mapping f : {0, 1}q → {0, 1}, where w ∈
{0, 1}q is called a Boolean vector whose ith component is wi. For two Boolean
function f and g, g ≤ f means that f and g satisfy g(w) ≤ f(w) for all w ∈
{0, 1}q, and g < f means that g ≤ f and g 6= f . Boolean variables x1, x2, ...
and the complements x̄1, x̄2, ... are called literals. A clause (resp., term) is a
disjunction (resp., conjunction) of at most one of xi and x̄i for each variable.
The empty disjunction (resp., conjunction) is denoted by ⊥ (resp., >).

A clause c (resp., term t) is an implicate (resp., implicant) of a function
f , if f ≤ c (resp. t ≤ f). Moreover, it is prime if there is no implicate c′ < c
(resp., no implicant t′ > t) of f , and positive (monotone) if it consists of positive
literals only. A conjunction normal form (CNF) (resp., disjunction normal form
(DNF)) is a conjunction of clauses (resp. disjunction of terms), and it is prime
if all its members are prime.

3 Proximity Based on Discernibility

3.1 Definition of Proximity Measure

In this paper, we aim to propose a new proximity measure for the agglomerative
hierarchical clustering such that the obtained clusters can be described simple
logical expressions. To describe clusters by logical forms, it is important that a
cluster can be discernible from other clusters on some attribute subset. Namely,
a nonempty cluster X ∈ P(U) and another nonempty cluster Y ∈ P(U) have the
discernibility relation R, i.e., no pair of objects in the different clusters has the
same attribute profile. Moreover, if X and Y are discernible on many attribute
subsets, we can say that X and Y are dissimilar. Therefore, we can define a
dissimilarity measure dR(X,Y ) by the cardinality of the attribute subsets which
discern X and Y .

dR(X,Y ) = |{A ⊆ AT | (X,Y ) 6∈ RA}|. (7)

The goal of our clustering is to obtain clusters each pair of which has a large
value of dR. However, applying dR directly to the hierarchical clustering has
difficulties.

• The measure dR is monotonic with the sizes (cardinalities) of the input
clusters. Large clusters have small values of dR.
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• Let X,Y, Z ⊂ U be nonempty clusters. When dR(X,Y ) is smaller than
the other pairs, X and Y are merged in the agglomerative hierarchical
clustering. Nevertheless, dR(X ∪ Y,Z) may be smaller than the other
possibilities dR(X ∪ Z, Y ) and dR(Y ∪ Z,X).

• The measure dR is insensitive to the input clusters. Some pairs of clusters
have the same values of dR.

To overcome these difficulties, we modify the dissimilarity measure:

d(X,Y ) = |{A ⊆ AT | (X,Y ) 6∈ RA and (X,Y ) ∈ SA}|. (8)

Attribute subsets A such that (X,Y ) 6∈ SA may distinguish the merged cluster
X ∪ Y from the other clusters, because objects in X and Y possibly have the
same attribute values on A. Hence, d(X,Y ) estimates how many attribute
subsets which discern X or Y from the other clusters are reduced after merging
X and Y .

For x, y ∈ U , let d′(x, y) be the conventional distance of x and y: d′(x, y) =
|{a ∈ AT | a(x) 6= a(y)}|. The proposed dissimilarity of the singleton clusters
{x} and {y} can be expressed by d′:

d({x}, {y}) = 2d
′(x,y) − 1. (9)

We can rescale d(X,Y ) to d′(X,Y ) by the above equation:

d′(X,Y ) = log2(d(X,Y ) + 1). (10)

The rest of the paper, we use d′ instead of d, and use the same symbol d instead
of d′.

3.2 On Computation for Dissimilarity Measure

To use the proposed dissimilarity measure, we need to calculate the number of
attribute subsets which satisfy the condition of (8). It is hard task to search all
of subsets of attributes, but we have an explicit formula of a Boolean function
corresponding to the condition. For X,Y ∈ P(U), these formulas are

ϕX,Y (a∗1, a
∗
2, . . . , a

∗
m) = ϕR

X,Y (a∗1, a
∗
2, . . . , a

∗
m) ∧ ϕ̄S

X,Y (a∗1, a
∗
2, . . . , a

∗
m), (11)

where,

ϕR
X,Y (a∗1, a

∗
2, . . . , a

∗
m) =

∧

u∈X,u′∈Y

∨
{a∗i | ai ∈ A, ai(u) 6= ai(u

′)},

ϕS
X,Y (a∗1, a

∗
2, . . . , a

∗
m) =

∧

u∈X,u′∈Y

∨
{a∗i | ai ∈ A, ai(u) = ai(u

′)},

a∗i is the positive literals corresponding to attributes ai, ϕ̄
S
X,Y is the negation of

ϕS
X,Y , and m is the number of attributes.
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There is the one-to-one correspondence between attribute subsets A and m
dimensional Boolean vectors A∗ = (A∗1, A

∗
2, ..., A

∗
m) such that,

ai ∈ A⇔ A∗i = 1, for ai ∈ AT. (12)

We have the following proposition.

(X,Y ) 6∈ RA and (X,Y ) ∈ SA ⇔ ϕX,Y (A∗) = 1, for A ⊆ AT. (13)

Now obtaining the value of d(X,Y ) transforms to calculating the number
of true vectors of ϕX,Y . For this purpose, we generate a sequence of pos-
itive Boolean formulas from ϕX,Y . Let ϕS

X,Y be denoted by cS1 ∧ · · · ∧ cSl ,

where cSi , i = 1, . . . , l are clauses. First, we define a positive Boolean formula
ϕ1
X,Y = (ϕR

X,Y )c̄S1 =1, where the subscript c̄S1 = 1 means the negation of cS1 is

set to 1. It implies that all literals appear in cS1 are set to 0. Second, we
define ϕ2

X,Y = (ϕR
X,Y ∧ cS1 )c̄S2 =1. Finally, we obtain positive Boolean formulas

ϕ1
X,Y , ϕ

2
X,Y , . . . , ϕ

l
X,Y , and we can see that the number of true vectors of ϕX,Y

is the sum of those of ϕ1
X,Y , ϕ

2
X,Y , . . . , ϕ

l
X,Y .

Then, we calculate the number of true vectors of the positive Boolean for-
mulas ϕi

X,Y by a branching method with a recursive formula. Let W and ϕ be
a set of Boolean variables and a Boolean formula. Let N (ϕ,W) be the number
of true vectors of ϕ with the input variablesW Moreover, Let V(ϕ) be the set of
Boolean variables which actually appear in ϕ. We have the following equation,

N (ϕ,W) = (N (ϕx=1,V(ϕ)− {x}) +N (ϕx=0,V(ϕ)− {x}))× 2|W−V(ϕ)|, (14)

where x is arbitrary variable in W, ϕx=1 and ϕx=0 are the formulas with fixing
x = 1 and x = 0, respectively. We define N (>,W) = 2|W| and N (⊥,W) = 0.
Because at least one variable is removed from the formula at each branching
x = 1 and x = 0, this procedure necessarily reaches either N (>,W) or N (⊥,W)
and stops within finite steps. Set W = {a∗1, a∗2, . . . a∗m}, and applying (14) to
(ϕi

X,Y ,W) recursively, we obtain the number of its true vectors.

4 Numerical Experiments

We examine characteristics of the proposed dissimilarity measure by numerical
experiments. As mentioned above, we apply it to agglomerative hierarchical
clustering.

Data sets are obtained from UCI Machine Learning Repository [1]. We
use two data sets “breast-cancer” and “zoo”, whose numbers of objects and
attributes are shown in Table 1. Moreover duplicated objects were deleted to
simplify results.

For reference methods, we use agglomerative hierarchical clustering with
single-linkage and complete-linkage. At single-linkage method, dissimilarity be-
tween a pair of clusters is defined by the minimum dissimilarity of a pair of
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Table 1: Data Sets
Data set Num of objects Num of attributes
breast-cancer 286 10
zoo 58 18

Table 2: Results for breast-cancer
Proposed Single-linkage Complete-linkage

Num clusters 30 33 32
Max size 116 247 26
Ave size 9.5 8.9 8.6

Intra distance 0.39 0.51 0.30
Num rules 64 44 104

Table 3: Results for zoo
Proposed Single-linkage Complete-linkage

Num clusters 7 8 7
Max size 14 19 18
Ave size 8.3 7.3 8.3

Intra distance 0.20 0.24 0.22
Num rules 7 8 9

objects in different clusters. Contrary, at complete-linkage method, it is defined
by the maximum dissimilarity.

The experimental results are shown in Table 2 and 3. The values in the
tables are characteristics of clusters for each data set computed by the proposed
method, and single- and complete-linkage methods. Clusters are obtained from
a dendrogram, which is the output of hierarchical clustering, by cutting it at
some level. The cutting level for each method is chosen so that the numbers of
clusters of three methods are almost same.

In the table, “Max size” and “Ave size” mean the maximum and average
cardinality of clusters. “Intra distance” means the average of dissimilarities
d of pairs x, y in the same clusters. “Num rules” means the number of rules
representing clusters, which are induced by the LEM2 algorithm [2].

Comparing the single-linkage method, the clusters of the proposed method
have smaller intra distance. On the other hand, comparing the complete-linkage
method, the clusters of the proposed method can be represented by the smaller
number of rules. Namely, the proposed method compromises homogeneity and
simple expression of obtained clusters.
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5 Concluding Remarks

In this paper, we have studied proximity based on discernibility of clusters on
attribute subsets. We have proposed a dissimilarity measure based on indis-
cernibility and disparateness relations R and S. For two nonempty clusters X
and Y , the proposed dissimilarity d(X,Y ) is defined by the number of attribute
subsets A such that (X,Y ) 6∈ RA and (X,Y ) ∈ SA. Because the indiscernibility
and disparateness relations are closely related to Boolean algebra, we can com-
pute the proposed dissimilarity d(X,Y ) by counting the number of true vectors
of Boolean formula ϕX,Y .

To examine the proposed dissimilarity measure, we have conducted numeri-
cal experiments. We have applied the dissimilarity measure to agglomerative hi-
erarchical clustering, and compared it with agglomerative clustering with single-
and complete-linkage. The results show that the proposed method compromises
homogeneity and simple expression of obtained clusters.

To examine the proposed dissimilarity measure using more benchmark data
sets is one of future topics.
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Department of Cybernetics and Biomedical Engineering
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Department of Informatics and Applied Mathematics

Moravian University College Olomouc

miroslav.pokorny@mvso.cz

Abstract

Finding of monitoring systems for deciding if or how re-adapt a PID
controller in literature is not so complicated. These monitoring systems
are also widely used in industry. But monitoring system which is based
on non-conventional methods for deciding, takes into account the non-
numeric terms and it is open for adding more rules, is not so common.
In the paper the procedures of control quality monitoring and necessary
re-adaptation of PID controller is solved using the fuzzy-logic principle
through the rule-based expert systems. There are used two fuzzy expert
systems. The first one for monitoring of quality of regulation process
is of Mamdani type, its rule base is created within two input linguistic
variables - namely the relative settling time and relative overshoot are
mentioned. The second expert system for designing of parameters of clas-
sic PID controller is of Takagi-Sugeno type, whose knowledge base is built
on know-how obtained from the combination of the frequency response
method and the step response Ziegler-Nichols design method. The proof
of efficiency of the proposed method and a numerical experiment is pre-
sented by the simulation in the software environment Matlab-Simulink. It
is shown that presented monitoring system with following design of PID
controller is useful for family of controlled systems of second order. The
both described knowledge-based systems are open and can be widen any
time.

1 Introduction

The paper is focused on adjustment of the monitoring system for deciding when
re-adapt the classic PID controller. Presented monitoring system has some
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common elements with [1]. It is created fuzzy expert system of Mamdani type
(ES1) with two inputs - overshoot and settling time, but settling time is not
defined as a classic time, but as the part or multiple of previous measured settling
time (relative settling time) and one output - score. So there are monitored
simply obtained process parameters. The score determines if is necessary to
re-adapt the controller.

The following design of parameters of classic PID controller is done by the
second fuzzy expert (ES2) system with a knowledge base is built on know-how
obtained from the combination of the frequency response method and the step
response Ziegler-Nichols design method [2].

2 Monitoring System

The monitoring system is fuzzy expert system [4], [5], [6] of Mamdani type with
two inputs, knowledge base with linguistic rules and one output and it has been
created and the efficiency is proofed for controlled systems of the second order
with transfer function in the form

GS(s) =
1

a2s2 + a1s + a0
. (1)

2.1 Inputs - Relative Overshoot and Relative Settling Time

The first input is the linguistic variable relative overshoot (RO) - the difference
between the controlled value (CV) and the required value (RV) is rated relatively
to the required value (2).

RO =
|CV − RV |

RV
(2)

The maximal overshoot of the time response of the system is detected after the
fast step change of timing, the fast step changes in timing could be caused by
the e.g. change of the controlled system or change of the required value. As it is
expressed in percentage, it is relative overshoot (RO). The value of the overshoot
is stored in the memory and then used with the settling time for determining
the score.

The second input is the linguistic variable relative settling time (RST). As
the name says, it is not the classic settling time (STk), it is defined as the part
or multiple of previous settling time (STk − 1)(3). So the classic settling time is
also stored in the memory as the overshoot, but the linguistic variable relative
settling time is defined as the ratio of current settling time and previous settling
time.

RSTk =
STk

STk−1
(3)

For evaluation of the settling time the 3 % standard deviation from steady-state
value [7]. The linguistic values of both linguistic variables are expressed by fuzzy
sets, for each linguistic variable by three linguistic values (Figure 1,2).
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Figure 1: The shape of the membership functions of linguistic values for input
linguistic variable Relative Overshoot (RO)

Figure 2: The shape of the membership functions of linguistic values for input
linguistic variable Relative Settling Time (RST)

2.2 Output - Score

The output of the monitoring fuzzy expert system is the score, which is also the
linguistic variable and its linguistic values are expressed by fuzzy sets (Figure 3).
As the fuzzy expert system of Mamdani type is used [8], the linguistic variable
score must be defuzzificated. For defuzzification it is used the COA method
(Center of Area) [9]. The score more than 2 means that the time response with
the current controller can be considered as appropriate. The score less than 2
is considered as not satisfactory and the controller has to be re-adapted [1].

Figure 3: The shape of the membership functions of linguistic values for output
linguistic variable Score
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2.3 Knowledge Base

The knowledge base is formed by nine linguistic IF-THEN rules of the Mamdani
type [9]:

1. If (RO is Small) & (RST is Slower) then (Score is Medium)

2. If (RO is Small) & (RST is Same) then (Score is Large)

3. If (RO is Small) & (RST is Faster) then (Score is Large)

4. If (RO is Appropriate) & (RST is Slower) then (Score is Small)

5. If (RO is Appropriate) & (RST is Same) then (Score is Medium)

6. If (RO is Appropriate) & (RST is Faster) then (Score is Large)

7. If (RO is High) & (RST is Slower) then (Score is About zero)

8. If (RO is High) & (RST is Same) then (Score is Small)

9. If (RO is High) & (RST is Faster) then (Score is Medium)

The shape of membership function of output variable is inferred using the Mam-
dani method. The crisp value of the output score is determined using the de-
fuzzification method Center of Area [9].

3 PID Parameter Design System

As it was mentioned also for design parameters of conventional PID controller
fuzzy expert system (ES2) is used [2], [3]. It uses know-how obtained from the
combination of the frequency response method and the step response Ziegler-
Nichols design method. [7], [10]

Expert design system is model of Takagi-Sugeno type [11] so it does not re-
quire defuzzification. The knowledge base of the ES2 is consisted of 27 linguistic
rules. For detailed information see [2].

4 The Description of Implemented Algorithm

It is important to define the algorithm of monitoring and following re-adaptation
of the controller. The relative overshoot is monitored and stored in memory after
every step change of controlled value. The settling time is measured also after
every step change of controlled value and is assessed to the previous settling time.
If these two monitored parameters are obtained the score is assessed. According
to the value of the score, the identification of the system starts and the controller
is re-adapted (section 2.2). The simplified model in Matlab-Simulink [12] is
depicted in Figure 4.

Score

{
≥ 2 do not re-adapt
< 2 re-adapt

}
. (4)
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For identification the stochastic identification - ARMAX method is used [13].
The re-adaptation (change of parameters of controller) procedure ES2 is done
only after the change of required value.

Figure 4: Simplified model in Matlab-Simulink

5 Verification of Created System

The verification was done in Matlab-Simulink [12], the timing with description
of important moments is depicted in Figure 5. Verification of the re-adaptation
procedure proposed above is started using the controlled system (S1) with trans-
fer function

GS1(s) =
1

2s2 + 9s + 7
(5)

for which the controller with transfer function

GR1(s) = 6.1

(
1 +

1

0.58s
+ 0.14s

)
(6)

designed through the identification system ES2 is used.
At the time tA the unit step of required value is introduced. Therefore,

the control process is carried out with 14%-overshoot and settling time tst1 =
4.3 sec. The appropriate calculated score by ES1 is

score1 = 2.10 > 2, (7)

which corresponds to the satisfactory control course.
At the time tC a sudden change of the controlled system (to controlled system

S2) is simulated from the transfer function GS1(s) to the transfer function

GS2(s) =
1

16s2 + 18s + 15
. (8)
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Thus, a non-zero control deviation appeared which is compensated by the
original controller GR1(s). The oscillating control course appeared with 12%-
overshoot and settling time tst2 = 8.4 sec. Now, the calculated appropriate
score is

score2 = 1.66 < 2 (9)

and insufficient control course is now indicated.
Therefore, when the nearest change of the deviation appeared at the time

tE (the unit step of reguired value is introduced) the re-adaptive process ES2 is
initialized and it is designed a new controller with transfer function

GR2(s) = 5.1

(
1 +

1

0.80s
+ 0.20s

)
. (10)

Now, the control process is carried out without any overshoot and with
settling time tst3 = 5.5 sec. The calculated appropriate score value is

score3 = 2.65 > 2 (11)

and the satisfactory control course is restored again.

6 Conclusion

The procedures of control quality monitoring and necessary re-adaptation of
PID controller is solved using the fuzzy-logic principle through the rule-based
expert systems. The first one concludes the initial impulse for controller adap-
tation. The rule base is created within two input linguistic variables - namely
the relative settling time and relative overshoot are mentioned. The following
design of parameters of classic PID controller is done by the second fuzzy expert
system with a knowledge base which is built on know-how obtained from the
combination of the frequency response method and the step response Ziegler-
Nichols design method. The proof of efficiency was done using simulations in
Matlab-Simulink. It is shown that presented monitoring system with following
design of PID controller is useful for family of controlled systems of second order.
The both described knowledge-based systems are open. Therefore, next time
authors think of adding more monitored parameters and widening of family of
controlled systems.
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Figure 5: Time response
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Abstract

Implicational ⇒∗, double-implicational ⇔∗ and equivalency ≡∗ data-
mining quantifiers defined on four-fold tables can form logical triads con-
nected by the set of inequalities among their values (which are treated
within fuzzy logic as truth values in the unit interval). In the contribution,
properties of those triads will be described and illustrated on examples of
truth-configurations of the set of seven formulae:

ϕ⇒∗ ψ,ψ ⇒∗ ϕ,¬ψ ⇒∗ ¬ϕ,¬ϕ⇒∗ ¬ψ,ϕ⇔∗ ψ,¬ϕ⇔∗ ¬ψ,ϕ ≡∗ ψ

1 Introduction

The notion of generalized observational quantifiers was introduced in the frame-
work of logical theory of the GUHA method of mechanized hypothesis formation
[2], [3]. It should be stressed that this method is one of the earliest methods of
data mining. The method was during years developed. Further investigations
of its mathematical and logical foundations can be found e.g. in [15], [14].

In the contribution, several classes of the most widely used four-fold table
quantifiers with truth values in the unit interval are investigated. The defini-
tion of triads of quantifiers provides a logically strong one-to-one correspondence
among classes of implicational, Σ-double implicational, and Σ-equivalency quan-
tifiers. Possible truth configurations of formulas with ratio-quantifiers (given
data and some threshold) are discussed in the last section.

2 Four-fold table generalized quantifiers

Assume having a data file and consider two Boolean (binary, dichotomic) at-
tributes ϕ and ψ. A four-fold table < a, b, c, d > corresponding to these at-
tributes is composed from numbers of objects in data satisfying four different
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Boolean combinations of attributes:

ψ ¬ψ
ϕ a b
¬ϕ c d

a - satisfying ϕ and ψ,
b - satisfying ϕ and ¬ψ,
c - satisfying ¬ϕ and ψ,
d - satisfying ¬ϕ and ¬ψ.

To avoid degenerated situations, we shall assume that all marginals of the
four-fold table are non-zero: a+ b > 0, c+ d > 0, a+ c > 0, b+ d > 0.

Various relations between ϕ and ψ can be measured in given data by different
four-fold table generalized quantifiers ∼ (a, b, c, d) which will be understood here
as functions with values in the interval [0, 1] like in fuzzy logic with evaluated
formulae [1], [12].

A four-fold table generalized quantifier ∼ is a [0, 1]-valued function
defined for all four-fold tables < a, b, c, d >.

We shall write ∼ (a, b) if the value of the quantifier ∼ depends only on a, b;
∼ (a, b, c) if the value of the quantifier ∼ depends only on a, b, c; ∼ (a, b, c, d) if
the value of the quantifier ∼ depends on all a, b, c, d. For brevity, we shall call
in this paper the ”four-fold table generalized quantifiers” simply ”quantifiers”.

The most general class of quantifiers originally introduced in two-valued logic
in [2] and called there associational is reflecting the following property: If the
four-fold table < a, b, c, d > represents a behavior of the derived attributes ϕ
and ψ in the given data, then the numbers a, d are supporting correlation of
ϕ and ψ but the numbers b, c are against. This property can be formulated in
fuzzy logic approach by: The higher are a, d and the smaller are b, c, the better
or at least not worse is truth-value of association of ϕ and ψ in given data.

The most common examples of such associational quantifiers are:

• quantifier⇒� of basic implication (or confidence of association rules):

⇒� (a, b) =
a

a+ b
.

• quantifier ⇔� of basic double implication (Jaccard 1900):

⇔� (a, b, c) =
a

a+ b+ c
.

• quantifier ≡� of basic equivalence (Kendall, Sokal-Michener 1958):

≡� (a, b, c, d) =
a+ d

a+ b+ c+ d
.

Properties of the basic quantifiers are in the core of definitions of several
useful classes of quantifiers (introduced originally in two-valued logic in [2],
[3]) which can be naturally given in fuzzy logic as follows (a, b, c, d, a′, b′, c′, d′

mean frequencies from arbitrary pairs of four-fold tables < a, b, c, d > and <
a′, b′, c′, d′ >, respectively):
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1. A quantifier ∼ (a, b) is implicational if
∼ (a′, b′) ≥∼ (a, b) when a′ ≥ a, b′ ≤ b.

2. A quantifier ∼ (a, b, c) is Σ-double implicational if
∼ (a′, b′, c′) ≥∼ (a, b, c) when a′ ≥ a, b′ + c′ ≤ b+ c.

3. A quantifier ∼ (a, b, c, d) is Σ-equivalence if
∼ (a′, b′, c′, d′) ≥∼ (a, b, c, d) when a′ + d′ ≥ a+ d, b′ + c′ ≤ b+ c.

3 Affiliated double-implication and equivalency
quantifiers

In the paper [7], the method of construction of triads of quantifiers is de-
scribed. Starting from an implicational quantifier ⇒∗, affiliated double-
implicational quantifier
⇔∗ is given by the formula

⇔∗ (a, b, c) =⇒∗ (a, b+ c),

and affiliated equivalency quantifier ≡∗ is given by the formula

≡∗ (a, b, c, d) =⇒∗ (a+ d, b+ c).

Double-implicational quantifier ⇔∗ measures the validity of bi-implication
(ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ) in data taking into account only cases where ϕ or ψ
is satisfied. Equivalency quantifier ≡∗ measures the validity of equivalency
ϕ ≡ ψ in the whole data. Both affiliated quantifiers ⇔∗,≡∗ naturally extend
quantification of implication (given by a definition of particual implicational
quantifier ⇒∗) for covering also two types of symmetric relations between ϕ
and ψ in data.

It is proved [7] that the above constructed double-implicational quantifier
⇔∗ is in some sense the least strict one out of the class of Σ-double implication
quantifiers satisfying the following inequality:

⇔∗ (a, b, c) ≤ min(⇒∗ (a, b), ⇒∗ (a, c)).

Analogically, the above constructed equivalency quantifier ≡∗ is in some
sense the most strict one out of the class of Σ-equivalency quantifiers satisfying
the following inequality:

≡∗ (a, b, c, d) ≥ max(⇔∗ (a, b, c),⇔∗ (d, b, c)).

From the fuzzy logic point of view, the following deduction rules are correct
for such triads of quantifiers:

ϕ⇔∗ ψ
ϕ⇒∗ ψ ,

ϕ⇔∗ ψ
ψ ⇒∗ ϕ,

ϕ⇔∗ ψ
ϕ ≡∗ ψ ,

¬ϕ⇔∗ ¬ψ
ϕ ≡∗ ψ .

Jiří Ivánek

147



The most common example of a triad of quantifiers is the triad of basic
quantifiers given in the previous section.

Another triad of quantifiers can be obtained from the statistically motivated
quantifier of upper critical implication (see [2], [15])⇒?

p (where p is a parameter,
0 < p < 1):

⇒?
p (a, b) =

a∑

i=0

(a+ b)!

i! (a+ b− i)! p
i (1− p)a+b−i

Quantifier ⇔?
p of upper critical double implication

⇔?
p (a, b, c) =

a∑

i=0

(a+ b+ c)!

i!(a+ b+ c− i)!p
i(1− p)a+b+c−i

Quantifier ≡?
p of upper critical equivalence

≡?
p (a, b, c, d) =

a+d∑

i=0

(a+ b+ c+ d)!

i!(a+ b+ c+ d− i)!p
i(1− p)a+b+c+d−i

There was proved [7] that each Σ-double implication quantifier ⇔∗ or Σ-
equivalency quantifier ≡∗ is a member of some triad of quantifiers.

4 Triads of ratio-quantifiers

This is one of the main properties of the basic implicational quantifier: the
greater the ratio a/b, the greater the value of the quantifier. This property is
stronger than that used in the definition of implicational quantifiers. Therefore
we introduced a subclass of implicational quantifiers with this property [6]:

A quantifier ∼ (a, b) is ratio-implicational, if ∼ (a′, b′) ≥∼ (a, b) when
a′b ≥ ab′. For any θ > 0 the following quantifier is ratio-implicational:

⇒θ (a, b) =
a

a+ θb
.

It is clear that each ratio-implicational quantifier is also implicational, but
the class of ratio-implicational quantifiers is a proper subclass of the class of
implicational quantifiers (the quantifier ⇒?

p is a counterexample).
In the case when the starting quantifier⇒∗ is ratio-implicational, we obtain

the corresponding triad of ratio-quantifiers ⇒∗,⇔∗,≡∗. There are some fur-
ther useful connections inside the triad of ratio-quantifiers, namely the following
inequalities (proved in [9]):

For all a, b, c, d the value ≡∗ (a, b, c, d) lies both

1. between the values ⇒∗ (a, b), and ⇒∗ (d, c);

2. between the values ⇒∗ (a, c), and ⇒∗ (d, b).
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φ⇔0
*
ψ

⇔0
*(a ,b , c)

φ⇒0
*
ψ

⇒0
*
(a ,b)

ψ⇒0
*
φ

⇒0
*(a , c )

φ≡0
*
ψ

≡0
*(a ,b , c , d )

¬ψ⇒0
*
¬φ

⇒0
*(d ,b)

¬φ⇒0
*
¬ψ

⇒0
*
(d , c)

¬φ⇔0
*
¬ψ

⇔0
*(d ,b , c)

Figure 1: Relations among values of a triad of ratio-quantifiers on a four-fold
table < a, b, c, d >.

5 Discussion of possible truth configurations

Let ⇒∗,⇔∗,≡∗ be a triad of ratio-quantifiers. Assume some truth threshold t
from [0, 1] is given. A formula α ∼ β is treated as true in data if the value of the
quantifier ∼ in the four-fold table < a, b, c, d > corresponding to the attributes
α, β is greater or equal to t. Using inequalities presented in the previous text
(see Figure 1), we discussed in [9] possible truth configurations of the set of
formulae

Implications: ϕ⇒∗ ψ, ψ ⇒∗ ϕ, ¬ϕ⇒∗ ¬ψ, ¬ψ ⇒∗ ¬ϕ;
Double-implications: ϕ⇔∗ ψ, ¬ϕ⇔∗ ¬ψ;

Equivalency: ϕ ≡∗ ψ.

There are formally 27 = 128 configurations, but we concluded that most of
them are not possible in any data (there are only 27 possible truth configura-
tions).

6 Conclusions

Implicational, Σ-double implicational, and Σ-equivalence quantifiers compose
logically affiliated triads ⇒∗, ⇔∗, ≡∗, where ⇒∗ is some implicational quan-
tifier, ⇔∗ is the least strict Σ-double implicational quantifier corresponding to
⇒∗, and ≡∗ is the most strict Σ-equivalence quantifier corresponding to ⇔∗.

The best known example is the triad of basic quantifiers ⇒�, ⇔�, ≡�.
Let us stress that to each given implicational quantifier, such a triad can

be constructed. This can naturally extend the particular quantifier’s definition
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for covering all three types of relations (implication, double implication, equiv-
alence). Moreover, proven deduction rules and inequalities among the values of
affiliated quantifiers in data can be used in various ways in data-mining proce-
dures oriented to association rules. For the subclass of ratio-implicational quan-
tifiers, there was demonstrated that a number of possible truth-configurations
of implication, double implication, equivalence in data (given some threshold)
is significantly reduced. The approach presented in the paper can serve to
formulate new data-mining tasks seeking for both asymmetric and symmetric
association rules in an unified way or to filter sets of association rules for more
user-oriented outputs of data-mining procedures.
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[4] Ivánek, J. (1999): On the Correspondence between Classes of Implicational
and Equivalence Quantifiers. In: Principles of Data Mining and Knowledge
Discovery. Proc. PKDD’99 Prague (Zytkow,J. and Rauch,J., eds.), Springer-
Verlag, Berlin 1999, pp. 116-124.
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[9] Ivánek, J. (2012): Affiliated Ratio-implicational and Equivalency Data-
mining Quantifiers and their Truth Configurations. In: 9th Workshop on
Uncertainty Processing. Eds. Kroupa, T. - Vejnarová, J., Univ. of Economics,
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Abstract

The paper deals with conflict situations in which a finite number of
individuals (players) can reach a consensus about choosing an element
from a fixed set of feasible alternatives. If no unanimous agreement is
reached, then some specified (disagreement) alternative, not necessarily
belonging to the set of feasible alternatives, is the result of bargaining. In
other words, every player can veto any alternative that is different from
the disagreement one.

There are two main streams of research in the literature: one approach
develops axiomatizations that define a unique solution, while the second
one constructs a non-cooperative game or a sequence of such games whose
solutions (usually Nash’s equilibria) are related to solutions provided by
axiomatization. We show that, in the three-player situation, some of the
standard axiomatizations have several distinctive features by which they
essentially differs from n-player situations with n 6= 3. Then we conclude
with presenting problems for further research.

Keywords: Bargaining problems, point-solutions, cooperative games,
non-transferable utility

1 Introduction

Throughout the paper, we use the following notation. For x = (x1, . . . , xn) and
y = (y1, . . . , yn) from Rn, we write x < y and x ≤ y if, respectively, xi < yi and
xi ≤ yi for each i from {1, 2, . . . , n}. If x ≤ y and x 6= y, then we write x ≺ y.
The relations >,≥, and � between elements of Rn are defined analogously.
The sets {x ∈ Rn : x ≥ 0} and {x ∈ Rn : x > 0} are denoted by Rn

+ and Rn
++,

respectively. If A is a subset of Rn and x is a point in Rn, then we denote the sets
{a+x : a ∈ A} and {a−x : a ∈ A} by A+x and A−x, respectively. Similarly,
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if λ is a real number, we define λA as the set {λa : a ∈ A}. Moreover, we define
the sets A+

x and A++
x by A+

x = {y ∈ A : y ≥ x} and A++
x = {y ∈ A : y > x},

respectively.
Formally, by an n-player bargaining problem we understand a nonempty

collection of pairs (S, d) where S is a nonempty subset of Rn and d is a point
in Rn. Often the elements of S are interpreted as utility n-tuples that the players
can obtain by reaching a unanimous agreement, and d as the outcome when the
players do not reach agreement. Following this interpretation we call elements
of S feasible alternatives and refer to d as the disagreement alternative. Notice
that if d belongs to S, then the disagreement alternative is feasible. In other
words, the players can agree to disagree.

Let B be an n-player bargaining problem. A bargaining solution for B is a
mapping f from B to Rn such that, for each instance (S, d) of B, the value1

f(S, d) of f belongs to S ∪ {d}. The value f(S, d) of bargaining solution f is
called f -solution (or simply solution) for instance (S, d). If (S, d) is an instance
of a bargaining problem, then we say that S+

d is the individually rational part
of (S, d), and S++

d is the strict individually rational part of (S, d). An instance
(S, d) is said to be comprehensive if, for each x ∈ S, the set {y : y ≤ x} is
included in S. For each i, the maximum of the function (x1, . . . , xn) 7→ xi over
the individually rational part of (S, d) will be denoted by mi(S, d), and the point
m(S, d) = (m1(S, d), . . . ,mn(S, d)) is called the utopia point (or bliss point or
ideal point) for instance (S, d).

Roughly speaking, there are two basic streams of research in the literature:
cooperative and non-cooperative. In the former, one develops an axiomatization
that defines a unique bargaining solution for B implicitly by requiring fulfillment
of a set of properties, while in the latter, one formalizes a bargaining process (for
each instance of B) explicitly through a non-cooperative game in the extensive
form.

Here, we shall deal only with the cooperative approach. First we recall the
classical bargaining problem and bargaining solution proposed by Nash [2] for
two-player problems. Then, for the same problem, we present some of other
bargaining solutions together with their axiomatizations. In particular, we in-
troduce the Raiffa solution and Kalai-Smorodinsky solution. We then continue
by discussing questions related to bargaining problems involving more than two
players. It turns out that a satisfactory extensions of some solution concepts
to problems with more than two players require modification of original Nash’s
problem. We focus attention to the three-player problems because usually, but
not always, the essential differences clearly appear already in the three-player
problems. We conclude with discussing problems for further research.

2 Two Players

In the cooperative approach, a particular bargaining solution of a bargaining
problem can be defined either explicitly (for example, as a result of some clearly

1We write f(S, d) instead of f((S, d)).
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stated procedure) or implicitly (for example, by a system of clearly stated re-
quirements or axioms). To illustrate the difference between these two basic
ways, we first consider Nash’s two player bargaining problem.

2.1 The Nash bargaining problem

The two-player bargaining problem introduced by Nash [2], denoted here by B,
is composed of instances (S, d) such that:

• The set S of feasible alternatives is a nonempty convex compact subset
of R2.

• The disagreement alternative d = (d1, d2) belongs to S.

• There is at least one alternative x = (x1, x2) in S such that x1 > d1 and
x2 > d2.

The Nash bargaining solution for the Nash bargaining problem B is defined
as the mapping f from B to R2 whose value f(S, d) is the maximizer of the
product (x1−d1)(x2−d2) over the individually rational part of (S, d). It is easy
to see that the Nash solution for B is well defined:

(i) The existence of a maximizer is guaranteed by the continuity of function
(x1, x2) 7→ (x1 − d1)(x2 − d2) and compactness of the individually rational part
of (S, d).

(ii) The uniqueness is guaranteed by convexity of S and strict quasi-concavity
of function (x1, x2) 7→ (x1− d1)(x2− d2) on the strict individually rational part
of (S, d).

As an illustration consider the instance (S, d) depicted in Figure 1, where
d = (0, 0, 0) and S = {(x1, x2) ∈ R2

+ : (x1, x2) ≤ (x1,
√

(1 − x1), 0 ≤ x1 ≤ 1}.
See [3] for an interpretation in terms of utility functions.

Figure 1: The Nash solution

Nash characterized this solution by proving that it is the only bargaining
solution for B satisfying the following four conditions.
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1. Weak Pareto optimality. For each instance (S, d) of B, if x and y are
in S and y > x, then f(S, d) 6= x.

2. Symmetry. For each instance (S, d) of B such that d1 = d2 and (x2, x1)
is in S whenever (x1, x2) is in S, we have: f1(S, d) = f2(S, d).

3. Scale invariance. If the instance (T, b) is obtained from (S, a) by the
transformations x1 7→ α1x1 +β1 and x2 7→ α1x2 +β2 with positive α1 and
α2, then f1(T, b) = α1f1(S, a) + β1 and f2(T, b) = α2f2(S, a) + β2.

4. Independence of irrelevant alternatives. For every pair (S, d)
and (T, d) of instances in B such that S ⊆ T , we have: if f(T, d) belongs
to S, then f(T, d) = f(S, d).

It is worth noting the difference between the first two conditions and remain-
ing conditions. The conditions of Pareto optimality and Symmetry act on single
instances, while Scale invariance and Independence of irrelevant alternatives re-
quire some kind of consistency across instances. In addition, if we modify the
problem by reducing B to the subset of B consisting only from the symmet-
ric instances2, then every bargaining solution satisfying Pareto optimality and
Symmetry coincides with the Nash bargaining solution for the reduced problem.

2.2 Other Solutions

It is well known that none of Nash’s four requirements is superfluous in the sense
that, for each trio of these conditions, there exists a bargaining solution for B
which is different from the Nash solution. In this subsection we consider two
solutions for B different from the Nash solution that satisfy all Nash’s conditions
except Independence of irrelevant alternatives. For a detailed survey of solutions
for the Nash bargaining problem, see [6] or [11].

2.2.1 The Kalai-Smorodinsky solution

The Kalai-Smorodinsky bargaining solution for B is the function that assigns
to instance (S, d) from B the maximal point (with respect to ≥ in R2) on the
straight line joining d and the utopia point for (S, d); see Figure 2. It turns
out that the Kalai-Smorodinsky solution is the only bargaining solution for
B satisfying Pareto optimality, Symmetry, Scale invariance and the following
condition of monotonicity.

5. Individual monotonicity. For every pair (S, d), (T, d) of instances in
B with the same utopia point, we have: if S ⊆ T , then f(S, d) ≤ f(T, d).

Note that, for the domain B, this result implies that the Nash solution does
not satisfy the condition of Individual monotonicity, and the Kalai-Smorodinsky
solution does not satisfy Independence of irrelevant alternatives.

2An instance (S, d) is symmetric if d1 = d2 and (x1, x2) ∈ S if and only if (x2, x1) ∈ S.
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Figure 2: The Kalai-Smorodinsky solution

2.2.2 The discrete Raiffa solution

Raiffa [4] and [5] (see also [1]) proposed several bargaining solutions for the
two-person Nash bargaining problem. One of them, called the discrete (or
sequential) Raiffa solution, is defined as the limit of sequence {xk} of points
from S generated as follows: Let (S, d) be an instance of B. Set x0 = d, and
continue by defining xk+1 as the middle point of the line segment connecting
the points (xk1 ,m2(S, xk)) and (m1(S, xk), xk2). See Figure 3, which is taken
from [12].

Figure 3: The discrete Raiffa solution

The convexity of S and the definitions of functions m1,m2 guarantee that,
for each k, the point xk belongs to S and xk+1 ≥ xk. Because S is compact, we
know that the sequence {xk} is convergent and its limit belongs to the Pareto
subset3 of S.

3If the Pareto subset of S is piecewise linear, the convergence may be finite.
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3 Three Players

It is not difficult to verify that the two-player Nash bargaining problem and
solution can easily be extended to situations involving more than two players.
By means of an there-player example (see Figures 4 and 5) we show that the
situation is not so clear for the Kalai-Smorodinsky and discrete Raiffa solution.

The Nash solution If there are three players, then the Nash bargaining prob-
lem B consists of ordered (S, d) pairs in which S is a nonempty compact convex
subset of R3, d ∈ S, and there is x ∈ S such that x > d. The Nash bargain-
ing solution is then defined as the mapping that assigns to each instance (S, d)
the maximizer of the product (x1 − d1)(x2 − d2)(x3 − d3) over the individually
rational part of (S, d). It can be shown that this solution is the only one that
satisfies the three-dimensional analogues of Nash’s conditions.

The Kalai-Smorodinsky solution Figure 4 shows that there exists an in-
stance in the three-dimensional domain B for which the direct extension of
Kalai-Smorodinsky bargaining solution is quite uninteresting: it is not Pareto
optimal, it is equal to the disagreement alternative.

Figure 4: The Kalai-Smorodinsky solution

Discrete Raiffa Solution Figure 5 shows that there exists an instance in the
three-dimensional domain B for which the direct extension of discrete Raiffa
solution is not a single-point bargaining solution. each point in the depicted
segment in the Pareto subset of S can be a solution.

We can remedy the problem with the Kalai-Smorodinsky and discrete Raiffa
solution by changing the domain B of the bargaining problem to problems con-
sisting from instances (S, d) which have the following properties: The disagree-
ment alternative belongs to S, and S is closed, convex, comprehensive, positively
bounded and such that all its boundary points are Pareto optimal. To distin-
guish this domain from B , we shall denote it by B∗. Then the natural exten-
sions of the Kalai-Smorodinsky solution and the discrete Raiffa solution satisfy
Pareto optimality, Symmetry and Scale invariance, and their axiomatizations
differ from the Nash one only in the requirement of Independence of irrelevant
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Figure 5: The discrete Raiffa solution

alternatives. Moreover, this modification allows for new class of bargaining so-
lutions that are impossible in two-player problems. Namely, the solutions which
satisfy the strengthening of the condition of Scale invariance to so called Ordinal
invariance; that is, the invariance with respect strictly increasing transformation
of individual utilities. This is certainly of interest because of attempts to build
economic theory on ordinal preferences.

The Shapley-Shubik solution We mentioned in the previous section that
there are no interesting ordinal solutions for the two-player Nash problem even
if B is changed to B∗. This is easy to show by considering the instance (S, d) of
B∗ with d = 0 and S = {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}. Let T be the
transformation (taken from [6]) of the individual utilities defined by T (x1, x2) =(

2x1

1+x1
, x2

2−x2

)
. It can easily be verified that T preserves utility orderings of both

players on the unit square Q = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, and that
it maps the set S onto itself. It follows that each solution function f on B∗
which is invariant with respect to ordinal transformations must assign to the
instance (S, 0) an alternative in S which is also a fixed point of mapping T on Q.
However, the only fixed points of T onQ are points (0, 0), (0, 1), (1, 0), (1, 1). The
alternative (1, 1) is infeasible and the remaining points are uninteresting: (0, 0)
is the disagreement alternative, and alternatives (0, 1) and (1, 0), are so called
dictatorial solutions.

The main argument of this proof cannot be extended to Nash’s bargaining
problem with three players, and non-dictatorial ordinally invariant solution exist
for problems with more than two players. One such solution has been proposed
by Shapley and Shubik already in [9], see also [10]. Recently Safra and Samet
[7], [8] have generalized the Shapley-Shubik solution for problems with more
than three players and demonstrated that there is even a continuum of ordinal
solutions that are simultaneously Pareto optimal and symmetric.

The construction of ordinal solutions for three player problems is based
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on the observation that if Q is a Pareto surface in R3 and (a1, a2, a3) is a
point in R3 \ Q, then there is a unique point (b1, b2, b3) such that the points
(a1, b2, b3), (b1, a2, b3), (b1, b2, a3) belong to S. Using this fact, one can define the
Shapley-Shubik solution outcome for an instance (S, d) as the limit of sequence
{xk} of points defined by setting x0 = d and defining xk to be the unique
point xk+1 = (xk+1

1 , xk+1
2 , xk+1

3 ) determined by the property that the points
(xk1 , x

k+1
2 , xk+1

3 ), (xk+1
1 , xk2 , x

k+1
3 ), (xk+1

1 , xk+1
2 , xk3) belong to the Pareto surface

of S.

Modification of the discrete Raiffa solution It is of interest to combine
the idea of the Shapley-Shubik solution and the discrete Raiffa solution to obtain
the solution to an instances (S, d) from B∗ as the limit of the sequence {yk} of
points from S defined as follows. Again we set y0 = d. Let (x1, x2, x3) be the
point obtained from y0 by one step of the Shapley-Shubik procedure. Then we
construct next point y1 by the same averaging that is used in the Sequential
Raiffa procedure, but using points (y01 , x2, x3), (x1, y

0
2 , x3), (x1, x2, y

0
3) instead of

using the points (m1(S, y0), y02 , y
0
3), (y01 ,m2(S, y0), y03), (y01 , y

0
2 ,m3(S, y0)). Then

we continue in the same way, that is, we construct yk+1 from yk as follows. First
we use the fact that there is a unique point (x1, x2, x3) such that the points
(yk1 , x2, x3), (x1, y

k
2 , x3), (x1, x2, y

3
3) belong to S and set yk+1 = 1

3 ((yk1 , x2, x3) +
(x1, y

k
2 , x3) + (x1, x2, y

k
3 )).

Again the convexity of S guarantee that, for each k, the point yk belongs
to S and yk+1 ≥ yk. Because the set S is compact, we know that the sequence
{yk} converges to a point in S; in fact to a point on the Pareto surface of S.
However, this bargaining solution no more satisfies ordinal invariance.

Notes and Comments. It would be interesting to compare the proposed
modification of the Raiffa procedure with other available procedures on some
standard classes of problems. For example, our experience suggests it is sub-
stantially faster than the Shapley-Shubik and discrete Raiffa procedures when
applied to instances from B∗. Constructing extensions to problems with more
than three players4 would also be of interest. However, as the main open ques-
tion we consider the problem of establishing systems of axioms that define the
proposed solution uniquely on reasonable classes of bargaining problems.

4 Acknowledgment

This paper was written with the support of the Czech Science Foundation
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Abstract

We deal with Pavlov-like strategy as well as Tit for Tat-like strategy in
Demographic Donor-Recipient (DR) game. We study the role of Pavlov-
like strategy on the emergence of cooperation by Agent-Based Simulation.

We extend Tit for Tat (TFT) and Pavlov (Pav) up to three states from
two and call them TFT-like and Pavlov-like strategy, respectively. Unlike
TFT-like, Pav-like has the following feature: Pav-like changes to using
C from using D or remains in using D if he is using D and experiences
opponents’ D’s or C’s, respectively. Thus we expect that some Pavlov-like
strategies in the population may soften the tendency toward defection of
the whole population and also the tendency toward full cooperation of the
whole population. Although sole Pavlov-like strategy is not so effective to
promote the cooperation, we found case where the cooperation emerges
more frequently with both TFT-like and Pavlov-like strategy than with
sole TFT-like (or Pav-like) strategy.

Keywords: Pavlov, Donor-Recipient game, emergence of cooperation,
generalized reciprocity, Agent-Based Simulation

1 Introduction

This paper investigates the role of Pavlov-like strategy on the emergence of
cooperation in Demographic DR game.

Epstein[1] introduces demographic model. He shows the emergence of co-
operation where AllC and AllD are initially randomly distributed in a square
lattice of cells. Here AllC always Cooperates and AllD always Defects. In each
period, players move locally and play Prisoner’s Dilemma (PD) game against
local player(s). If wealth (accumulated payoff) of a player becomes negative or
his age becomes greater than his lifetime, he dies. If his wealth becomes greater
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than some amount and there is an unoccupied local cell, he has an offspring and
gives the offspring some amount from his wealth.

Namekata and Namekata[2] extend Epstein’s original model discussed above
by introducing global move, global play, Reluctant players, who delay replying
to changes and use extended forms of TFT, into demographic PD game and
consider the effect of Reluctant players on the emergence of cooperation, and
show cases where the reluctance promotes the emergence of cooperation. Here
TFT Cooperates at first encounter and at later encounters uses the same move
as the opponent did in the previous encounter. Namekata and Namekata[3]
examine the effect of move-play pattern on the emergence of cooperation and
the distribution of strategies. They restrict patters of move and play of a player
to simple structure; local or global, where local or global means that with high
probability the player moves (plays) locally or globally, respectively. For exam-
ple, a player with global move and local play (abbreviated as gl) moves globally
with high probability and plays DR games against (possibly different) local
opponents with high probability at each period. They show that cooperative
strategies evolutionarily tend to move and play locally, defective strategies do
not, and AllC and AllD are abundant unless all strategies initially play locally.

Nowak and Sigmund[4] consider the emergence of cooperation in infinitely
repeated PD game. Population consists of strategies that depend on one’s own
move as well as the opponent’s at the last encounter, i.e., (pCC, pCD, pDC, pDD)
where pXY is the probability with which C is used at this encounter given that
the outcome of the last encounter is XY . They do not use Demographic model.
Players play infinitely repeated PD game at each period instead of one-shot PD
game against randomly selected opponent. The frequency of each strategy in
population at the next period is proportional to its payoff at this period. They
show that not TFT but Pavlov (0.999, 0.001, 0.007, 0.946) is most abundant
strategy in the population in the long run. They argue that Pavlov’s success
is based on the following two advantageous features compared with TFT in
infinitely repeated PD game: (1) Pavlovs can correct inadvertent defection and
return to mutual cooperation. (2) Pavlov can exploit AllC.

We deal with Pavlov-like strategy as well as Tit for Tat-like strategy in
finitely repeated Demographic Donor-Recipient (DR) game. Pavlov (Pav) is
known to be one of the basic strategies in dilemma situations as well as Tit
for Tat (TFT). TFT and Pav have two inner states whose label C(ooperate)
or D(efect) indicates their current move. The state in the next encounter is
determined based on the current opponent’s move, differently between TFT
and Pav. The next state of TFT is the immediate neighbor of the current
state toward C or D (if possible) in case of the current opponent’s C or D,
respectively. On the other hand, that of Pav remains the same if the current
opponent uses C or is changed from C to D (or from D to C) if the current
opponent uses D, respectively. Alternatively Pav is described as follows: Win
Stay, Lose Shift, that is, Pav remains in the same move if he feels comfortable,
whereas Pav changes his move if he feels uncomfortable, because we configure
the payoff matrix so that the payoff is positive if the opponent uses C or negative
if the opponent uses D.
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In this paper, we extend TFT and Pav up to three states and call them TFT-
like and Pavlov-like strategy, respectively. Pavlov-like changes to using C from
using D or remains in using D if he is using D and experiences opponents’ D’s or
C’s, respectively. Thus we expect that some Pavlov-like strategies in the pop-
ulation may soften the tendency toward defection of the whole population and
also the tendency toward full cooperation of the whole population. We examine
initial distribution of strategies that promote the emergence of cooperation and
study the role of Pav-like strategy on the emergence of cooperation.

2 Model

We start with extending TFT and Pav as follows in order to introduce TFT-like
and Pavlov-like (Pav-like) strategy. The idea is to introduce reluctance to im-
mediate reply to its opponent’s change: Let m = 0, . . . , n; t = 0, . . . ,m+ 1; s =
0, . . . ,m. Strategy (m, t; s)X is illustrated in Figure 1 where X is T for TFT-
like or P for Pav-like. It has m+ 1 inner states. The inner states are numbered
0, . . . ,m; thus m is the largest state number. State i is labeled Di if i < t
or Ci if not. If current state is labeled C or D, then the strategy prescribes
using C or D, respectively. In other words, the strategy prescribes using D if
the current state i < t and using C if not; thus the value t is the threshold
which determines the move of a player. Initial state in period 0 is state s; its
label is Ds if s < t or Cs if not. If current state is i, then the next state of
TFT-like is min{i + 1,m} or max{i − 1, 0} given that the opponent uses C or
D, respectively, in this encounter. If current state is i and i ≥ t, then the
next state of Pav-like is min{i+ 1,m} or max{i− 1, 0} given that the opponent
uses C or D, respectively, in this encounter. If current state is i and i < t,
then the next state of Pav-like is max{i − 1, 0} or min{i + 1,m} given that
the opponent uses C or D, respectively, in this encounter. Thus TFT-like and
Pav-like strategies act differently if their current state i < t; TFT-like strategy
in Defective state (i < t) tends to use the same move as the opponents, whereas
Pav-like in Defective state (i < t) tends to use the opposite move as the oppo-
nents. If m > 1, then the strategy may delay replying to its opponent’s change.

Figure 1: TFT-like and Pav-like strategies
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Table 1: Payoff Matrix of DR game
(b = 4.5 and c = 1)

Recipient

Donor
C −c− x, b− x
D −x,−x

Note that TFT or Pav is expressed
as (1, 1; 1)T or (1, 1; 1)P, respectively,
in this notation. Thus strategy
(m, t; s)X is an extended form of TFT
or Pav. To sum up, our strategies
are expressed as (m, t; s)X; m is the
largest state number, t is the thresh-
old, and s is the initial state number, X denotes TFT-like or Pav-like. We omit
the initial state like (m, t; ∗)X if it is determined randomly. We also omit the
initial state like (m, t)X if we have no need to specify it.

Table 2: Initial distribution of inheriting properties
property: initial distribution

strategy: We deal with 3 populations, T(x,m), TP(x,m), and P(x,m)
for x = 0.05, 1/4 or 1/6 and m = 4 or ∞ as follows:
T(x,m):= {xAllD(m), 1−x

2 (2, 2; ∗)T, 1−x
2 (2, 1; ∗)T, xAllC(m)},

TP(x,m):= {xAllD(m), 1−x
4 (2, 2; ∗)P, 1−x

4 (2, 2; ∗)T,
1−x
4 (2, 1; ∗)P, 1−x

4 (2, 1; ∗)T, xAllC(m)},
P(x,m):={xAllD(m), 1−x

2 (2, 2; ∗)P, 1−x
2 (2, 1; ∗)P, xAllC(m)},

where AllC(m) = (2, 0)T for m = ∞, AllC(m) = (4, 1; 4)T for m = 4,
and AllD(m) = (2, 3)T for m = ∞, AllD(m) = (4, 4; 0)T for m = 4.
The notation, for example, of T(x,m), means that with probability x strat-
egy AllC(m) is selected, with probability 1−x

2 strategy (2, 1; ∗)T is selected,
and so on, where ∗ indicates that initial state is selected randomly. Note
that initially 50% of players use C on the average since both AllC(m) and
AllD(m) are included with the same probability and so are both (m, t; ∗)X
and (m,m − t + 1; ∗)X. As reference populations, we also deal with
All:={0.5AllD(∞), 0.5AllC(∞)} and All4:={0.5AllD(4), 0.5AllC(4)}.
(rGM, rGP ): We deal with distribution {0.25ll, 0.25lg, 0.25gl, 0.25gg}.
For example, gl means rGM is distributed in interval g and rGP in interval
l, where l := (0.05, 0.2) and g := (0.8, 0.95). {0.25ll, 0.25lg, 0.25gl, 0.25gg}
means rGM and rGP are selected randomly among ll, lg, gl, and gg.

Note that AllC is denoted by (m, 0)T and AllD by (m,m+1)T. If m is large,
(m, 1;m)T and (m,m; 0)T are very close to AllC and AllD, respectively. We
use these pseudo-AllC (m, 1;m)T and pseudo-AllD (m,m; 0)T for m = 4 later
in this paper because we want to relax unrealistic fixed move strategy.

We deal with Donor-Recipient (DR) game as a stage game. DR game is
a two-person game where one player is randomly selected as Donor and the
other as Recipient. Donor has two moves, Cooperate (C) and Defect (D). C
means Donor pays cost c in order for Recipient to receive benefit b (b > c > 0).
Defect means Donor does nothing. Recipient has no move. Since it is common in
demographic dilemma game that the sum of payoffs of a player, in two successive
games once as Donor and once as Recipient, to be positive if the opponent uses
C and negative if D and the worst sum of a player is equal to the best sum
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Table 3: Detailed Description of (1) Move and (2) Play
(1) With probability rateOfGlobalMove (abbreviated as rGM), a player

moves to random unoccupied cell in the whole lattice. If there is no
such cell, he stays at the current cell. Or with probability 1− rGM ,
a player moves to random cell in von Neumann neighbors if it is
unoccupied. If there is no such cell, he stays at the current cell.

(2) With probability rateOfGlobalPlay (abbreviated as rGP ), the oppo-
nent against whom a player plays dilemma game is selected at random
from all players (except himself) in the whole lattice. Or with proba-
bility 1−rGP , the opponent is selected at random from von Neumann
neighbors (no interaction if none in the neighbors). This process is
repeated 8 times. (Opponents are possibly different.)

in absolute value, we transform the original payoffs to new ones by subtracting
constant x. Constant x is given by x = b−c

4 . We set b = 4.5 and c = 1 in
this paper. Table 1 shows the transformed payoff matrix of DR game. We
assume that each player plays 8 games against (possibly different) players at
each period.

In period 0, N(= 100) players (agents) are randomly located in 30-by-30
lattice of cells. The left and right borders of the lattice are connected. If a player
moves outside, for example, from the right border, then he comes inside from
the left border. So are the upper and lower borders. Players use strategies of
(m, t; s)X form. Initial wealth of every player is 6. Their initial (integer valued)
age is randomly distributed between 0 and deathAge (= 50). In each period,
each player (1st) moves, and (2nd) plays DR games given by Table 1 against
other players. Positive payoff needs opponent’s C. (The detailed description
of (1st) move and (2nd) play is given in Table 3.) The payoff of the game is
added to his wealth. If the resultant wealth is greater than fissionWealth (= 10)
and there is an unoccupied cell in von Neumann neighbors, the player has an
offspring and gives the offspring 6 units from his wealth. His age is increased
by one. If the resultant wealth becomes negative or his age is greater than
deathAge (= 50), then he dies. Then next period starts.

In our simulation we use synchronous updating, that is, in each period, all
players move, then all players play, then all players have an offspring if possible.
We remark that the initial state of the offspring’s strategy is set to the current
state of the parent’s strategy. There is a small mutationRate (= 0.05) with
which inheriting properties are not inherited. Initial distributions of inheriting
properties given in Table 2 are also used when mutation occurs. We assume that
with errorRate (= 0.05) a player makes mistake when he makes his move. Thus
AllC may defect sometime. If population consists of AllC and AllD, rGM = 0,
and rGP = 0, then our model is similar to that of Epstein[1]. His model uses
asynchronous updating while our model uses synchronous updating.

Tsuneyuki Namekata, Yoko Namekata

167



3 Simulation and Results

We use Ascape ( http://sourceforge.net/projects/ascape/ ) to simulate our
model. We execute 300 runs of simulations in each different setting. We judge
that the cooperation emerges in a run if there are more than 100 players and
the average C rate (average Cr) is greater than 0.2 at period 500, where the
average Cr at a period is the average of the player’s Cooperation rate (Cr) at
the period over all players and the player’s Cr at the period is defined as the
number of move C used by the player divided by the number of games played
as Donor at the period. (We interpret 0/0 as 0.) This average Cr is the rate at
which we see cooperative move C as an outside observer. Since negative wealth
of a player means his death in our model and he has a lifetime, it is necessary
for many players to use C in order that the population is not extinct. We focus
on emergence rate of cooperation that is rate at which the cooperation emerges.

Table 4: Ce for pure AllC and AllD
m =∞ All T TP P

Ce(equal) .473 .630 .557 .447
Ce(x = .05) .473 .657 .717 .420

Table 5: Ce, average actual Cr
m = 4 All4 T TP P

Ce(x = .05) .513 .487 .703 .590
aaCr(4, 1)T .900 .931 .805 .804
aaCr(4, 4)T .560 .636 .214 .222

We are interested in cases
where the cooperation emerges
more frequently with both TFT-
and Pavlov-like strategy than
with sole Pavlov-like strategy and
then than with sole TFT-like
strategy. We examine how of-
ten the cooperation emerges in
Demographic DR game with sev-
eral different initial distributions
of strategies. Pure AllC and AllD,
and even with their low frequency
0.05 at period 0 prevent Pav-like
strategy from promoting cooperation as shown in Table 4, e.g., .557 < .630
and .420 < .657. Table 4 shows emergence rate of cooperation Ce’s for equal
frequency at period 0 in the second row and for low 0.05 frequency in the third
row, in pure AllC and AllD population. All column in Table 4 indicates pure
AllC and AllD population defined in Table 2, T and P columns indicate the
corresponding x = 1/4 and x = 0.05 population defined in Table 2 in case of
m = ∞, and TP column indicates x = 1/6 and x = 0.05 population defined in
Table 2 in case of m =∞. In place of pure AllC and AllD, we use pseudo-AllC
(4, 1; 4)T and pseudo-AllD (4, 4; 0)T with initial low frequency 0.05 at period 0.
The emergence rate of cooperation Ce’s and other related data are summarized
in Table 5. Table 5 shows that Pav-like (.590) and TFT-like + Pav-like (.703)
promote the cooperation in this order compared with All4 (.513). The third
and fourth column in Table 5, aaCr’s are the actual average Cr of pseudo-AllC
(4, 1)T and pseudo-AllD (4, 4)T. aaCr of a strategy is defined as the average of
players’ Cr over all player using the strategy and playing at least one game as
Donor. The sum of aaCr’s of pseudo-AllC and pseudo-AllD, for example, 1.46
for All4, is much larger than 1 for All4 and T, but is almost equal to 1 for TP
and P. We conclude that introducing pseudo-AllC and pseudo-AllD in place of
pure AllC and AllD is reasonable modelling if there exists Pav-like strategy in
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the population.
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Next we investigate the role of
Pav-like strategy. We select 35 suc-
cessful runs of T, TP and P popula-
tions, respectively, from data in Ta-
ble 5. We trace average Cr from pe-
riod 1 to period 500 at each success-
ful run. We judge average Cr at a
period is High(> 0.7) if it is greater
than 0.7, or is Low(≤ 0.2) if it is less
than or equal to 0.2, or is Middle
otherwise. We see in Figure 2 that
average Cr is almost High in T pop-
ulation, whereas it is mostly Middle
in TP population and it is almost
Middle in P population. Thus Pav-
like makes average Cr Middle. We
want to evaluate easily the change of
average Cr over periods. We assign
Low to 0 as a new vertical value dif-
ferent from the original value of av-
erage Cr, Middle to 1, and High to
2. Then we focus only on their local
maximums and minimums. A tran-
sition of local optimums is classified
into one of {−2,−1, 1, 2}. Suppose,
for example, that local maximum is
2 at some period and the nearest lo-
cal minimum is 1 at some later pe-
riod, then the transition is evaluated
as −1. We count all transitions of
these local optimums over periods in
each run. We show average of these
number of transitions over 35 runs
in Figure 3. We conclude that pop-
ulation T, TP, and P decreases the
number of transitions in this order.

Next we concentrate on the av-
erage frequency of Pav-like strategy
and the average Cr at period 500 in
TP population. Figure 4 is scatter diagram of (average frequency of Pav-like
strategy, average Cr) at period 500 of all successful runs in TP population. For
convenience sake, let us divide all successful runs into two cases, A and B; A for
average Cr >= 0.57, B for average Cr < 0.57. Figure 4 shows that the larger
the average frequency of Pav-like strategy the smaller the average Cr at period
500 in TP population.
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Figure 5 and 6 show the average distributions of strategies at period 500 for
case A and B, respectively. We see that average frequency of Pav-like strategies,
(2, 2)P and (2, 1)P, is not so large, around 0.15 even in case B.
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4 Conclusion

We examine the role of Pav-like strategy on the emergence of cooperation in
Demographic DR game by Agent-Based Simulation. We show that some Pav-
like strategies promote cooperation and soften the tendency toward defection
and toward full cooperation in whole population if there initially are low frequent
pseudo-AllC and pseudo-AllD in stead of equal pure AllC and AllD.
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Abstract

A fuzzy preference matrix is the result of pair-wise comparison a pow-
erful method in multi-criteria optimization. When comparing two ele-
ments, the decision maker assigns the value between 0 and 1 to any pair of
alternatives representing the element of the fuzzy preference matrix. Here,
we investigate relations between transitivity and consistency of fuzzy pref-
erence matrices and multiplicative preference ones. The obtained results
are applied to situations where some elements of the fuzzy preference ma-
trix are missing. We propose a new method for completing fuzzy matrix
with missing elements called the extension of the fuzzy preference ma-
trix. We investigate some important particular cases of fuzzy preference
matrix with missing elements. Consequently, by the eigenvector of the
transformed matrix we obtain the corresponding priority vector. Illustra-
tive numerical examples are supplemented.

1 Introduction

In many DM problems, procedures have been established to combine opinions
about alternatives related to different points of view. These procedures are
often based on pair-wise comparisons, in the sense that processes are linked to
some degree of preference of one alternative over another, [3], [4], [6], [7], or [11].
The aim of this contribution is to investigate some important particular cases
of fuzzy preference matrix with missing elements.

The paper is organized as follows. Multiplicative and additive preference
relations (i.e. fuzzy preference relations) and their properties are introduced
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in Section 2. In Section 3, based on inconsistency measurement of multiplica-
tive preference matrix known from AHP, the inconsistency of fuzzy preference
matrix is measured by the a-inconsistency index and a-inconsistency ratio as
well as a-intransitivity index and a-intransitivity ratio. The priority vector for
ranking the alternatives is derived by the classical Perron-Frobenius theory. In
Secton 4, a special notation for the matrix with missing elements is introduced
and the concept of the extension of fuzzy preference matrix with missing ele-
ments is defined. This concept is based on a particular representation of an
a-consistent/a-transitive matrix and the elements of the extended matrix are
calculated by the least squares method. In Section 5, two special cases of fuzzy
preference matrix with missing elements are investigated. Here, the expert eval-
uates only n − 1 pairs of alternatives. In this section, two numerical examples
illustrating the necessary and sufficient conditions for elements to be evaluated
in the pairwise comparison matrix are presented. In Section 6, some concluding
considerations and remarks are presented.

2 Multiplicative and additive preferences

The DM problem can be formulated as follows. Let X = {x1, x2, ..., xn} be a
finite set of alternatives. These alternatives have to be classified from best to
worst, using the information given by a DM in the form of pairwise comparison
matrix.

The preferences over the set of alternatives, X, may be represented in the
following two ways: multiplicative and additive. Let us assume that the prefer-
ences on X are described by a preference relation on X given by a positive n×n
matrix A = {aij}, where aij > 0 for all i, j indicates a preference intensity for
alternative xi to that of xj , i.e. it is interpreted as “xi is aij times better than
xj”. The elements of A = {aij} satisfy the following reciprocity condition [9].

A positive n×n matrix A = {aij} is multiplicative-reciprocal (m-reciprocal),
if

aij .aji = 1 for all i, j. (1)

A positive n×n matrix A = {aij} is multiplicative-consistent (or, m-consistent)
[9], if

aik = aij .ajk for all i, j, k (2)

Here, aii = 1 for all i, and also (2) implies (1), i.e. an m-consistent matrix is
m-reciprocal (however, not vice-versa).

Notice that aij > 0 and m-consistency is not restricted to the Saaty’s scale
{1/9, 1/8, ..., 1/2, 1, 2, ..., 8, 9}. Here, we extend this scale to the closed interval
[1/σ;σ], where σ > 1.

Sometimes it is more natural, when comparing xi to xj , that the decision
maker assigns the value bij to xi and bji to xj , where bij + bji = 1. With this
interpretation, the preferences on X can be understood as a fuzzy preference
relation, or, valued relation, with membership function µR : X × X → [0; 1],
where µR(xi, xj) = bij denotes the preference of the alternative xi over xj [6],
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[9]. Hence, the fuzzy preference relation on X can be understood as a fuzzy
preference matrix. Important properties of fuzzy preference matrix B = {bij},
can be summarized as follows.

An n × n matrix B = {bij} with 0 ≤ bij ≤ 1 for all i and j is additive-
reciprocal (a-reciprocal) [3], if

bij + bji = 1 for all i, j. (3)

Evidently, if (3) holds, then bii = 0.5 for all i.
For making a coherent choice (when assuming fuzzy preference relations) a

set of properties to be satisfied by such relations have been suggested in the
literature [10].

The nomenclature of properties of relations is, however, not stabilized yet,
compare e.g. [3], [10], [5], [11]. Here, we use the usual nomenclature which is
as close as possible to the one used in the literature.

Transitivity is one of the most important properties concerning preferences,
and it represents the idea that the preference intensity obtained by comparing
directly two alternatives should be equal to or greater than the preference in-
tensity between those two alternatives x and y obtained using an indirect chain
of alternatives x and z, z and y.

Let B = {bij} be an n× n a-reciprocal matrix with 0 < bij < 1 for all i and
j.

We say that B = {bij} is multiplicative-transitive (m-transitive) [10], if

bik
bki

=
bij
bji
.
bjk
bkj

for all i, j, k. (4)

Notice that if B is m-consistent then B is m-transitive. Moreover, if B = {bij}
is m-reciprocal, then B is m-transitive if and only if B is m-consistent.

We say that B = {bij} is additive-transitive (a-transitive) [3], if

bik − 0.5 = (bij − 0.5) + (bjk − 0.5) for all i, j, k. (5)

Equation (5) can be equivalently rewritten as (see [10]):

bik = 0.5 + bij − bkj for all i, j, k. (6)

or, see [3],

bij + bjk + bki = 1.5 for all i, j, k. (7)

In [5] this property is called additive consistency, here, we reserve this name
for different concept, see below.

Moreover, we shall investigate some relationships between a-reciprocal and
m-reciprocal pairwise comparison matrices. We start with extension of the result
published by E. Herrera-Viedma et al. [3]. For this purpose, given σ > 1, we
define the following function ϕσ and its inverse function ϕ−1σ as

Jaroslav Ramík, Petr Korviny

173



ϕσ(t) =
1

2
(1 +

ln t

lnσ
) for t ∈ [1/σ;σ], (8)

ϕ−1σ (t) = σ2t−1 for t ∈ [0; 1]. (9)

We obtain the following results, characterizing a-transitive and m-consistent
matrices, see [3], [6]. By σ > 1 evaluation scale [1/σ;σ] is defined.

Proposition 1. Let σ > 1, A = {aij} be an n×n matrix with 1
σ ≤ aij ≤ σ for

all i and j. If A = {aij} is m-consistent then B = {ϕσ(aij)} is a-transitive.

Proposition 2. Let σ > 1, B = {bij} be an n× n matrix with 0 ≤ bij ≤ 1 for
all i and j. If B = {bij} is a-transitive then A = {ϕ−1σ (bij)} is m-consistent.

Now, let us define the function φ and its inverse function φ−1 as follows

φ(t) =
t

1 + t
for t > 0, φ−1(t) =

t

1− t for 0 < t < 1. (10)

We obtain the following results, see [6].

Proposition 3. Let A = {aij} be an n × n matrix with 0 < aij for all i
and j. If A = {aij} is m-consistent then B = {bij} = {φ(aij)} is m-transitive.

Proposition 4. Let B = {bij} be an a-reciprocal n×n matrix with 0 < bij < 1
for all i and j. If B = {bij} is m-transitive then A = {aij} = {φ−1(bij)} is
m-consistent.

From Proposition 2 it is clear that the concept of m-transitivity plays a simi-
lar role for a-reciprocal fuzzy preference matrices as the concept of m-consistency
does for m-reciprocal matrices. That is why it is reasonable to introduce the
following definition:

Definition. An a-reciprocal and m-transitive matrix B = {bij} with 0 < bij <
1 is called additive-consistent (a-consistent).

Proposition 4 can be reformulated accordingly: If B = {bij} is a-consistent,
then A = {φ−1(bij)} is m-consistent.

In practice, perfect consistency/transitivity is difficult to obtain, particularly
when evaluating preferences on a set with a large number of alternatives.

3 Inconsistency of pairwise comparison matri-
ces, priority vectors

If for some positive n × n matrix A = {aij} and for some i, j, k = 1, 2, ..., n,
multiplicative consistency condition (2) does not hold, then A is said to be
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multiplicative-inconsistent (or, m-inconsistent). Eventually, if for some n × n
fuzzy preference matrix B = {bij} with 0 ≤ bij ≤ 1 for all i and j, and for
some tripple of indices i, j, k, (4) does not hold, then B is said to be additive-
inconsistent (or, a-inconsistent) . Finally, if for some n × n fuzzy matrix B =
{bij} with 0 ≤ bij ≤ 1 for all i and j, and for some tripple of indices i, j, k,
(5) does not hold, then B is said to be additive-intransitive (a-intransitive).
In order to measure the grade of inconsistency/intransitivity of a given matrix
several instruments have been proposed in the literature. Recall that in AHP,
multiplicative reciprocal matrices have been investigated, see [9].

As far as additive-reciprocal matrices are concerned, some instruments for
measuring a-inconsistency/a-intransitivity are proposed here. Instead of pos-
itive matrices we consider matrices with nonnegative elements, i.e. some el-
ements could be eventually zeros. Inconsistency of such matrix is based on
Perron-Frobenius theory. The Perron-Frobenius theorem describes some of the
remarkable properties enjoyed by the eigenvalues and eigenvectors of irreducible
nonnegative matrices (e.g. positive matrices).

Theorem. (Perron-Frobenius, [2]) Let A be an irreducible nonnegative n × n
matrix. Then the spectral radius, ρ(A), is a real eigenvalue, which has a positive
(real) eigenvector. This eigenvalue (called the principal eigenvalue of A) is sim-
ple, and its eigenvector (called priority vector) is unique up to a multiplicative
constant.

The m-consistency of a nonnegative m-reciprocal n×n matrix A is given by
the m-consistency index Imc(A) defined in [9] as

Imc(A) =
ρ(A)− n
n− 1

, (11)

where ρ(A) is the spectral radius of A (particularly, the principal eigenvalue of
A).

The rank of the alternatives in X is determined by the vector of weights

w = (w1, w2, ..., wn), with wi > 0, for all i = 1, 2, ..., n, such that
n∑
i=1

wi = 1,

satisfying Aw = ρ(A)w. This vector is called the (normalized) principal eigen-
vector of A, or, the priority vector of A. Since the element of the priority vector
wi is interpreted as the relative importance of alternative xi, the alternatives
x1, x2, ..., xn in X are ranked by their relative importance. The following result
has been derived in [9].

Proposition 5. If A = {aij} is an n × n positive m-reciprocal matrix, then
Imc(A) ≥ 0. Moreover, A is m-consistent if and only if Imc(A) = 0.

To provide a consistency measure independently of the dimension n of the
matrix A, T. Saaty in [9] proposed the consistency ratio. In order to distinguish
it here from the other consistency measures, we shall call it m-consistency ratio.
This is obtained by taking the ratio Imc to its mean value Rmc, i.e. the mean
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value of Imc(A) of positive m-reciprocal matrices A of dimension n, whose entries
aij are uniformly distributed random variables on [1/9; 9], i.e.

CRmc =
Imc
Rmc

. (12)

For this consistency measure it was proposed an estimation of 10% thresh-
old of CRmc. In other words, a pairwise comparison matrix could be ac-
cepted (in a DM process) if its m-consistency ratio does not exceed 0.1, see
[9]. The m-consistency index Imc has been defined by (11) for m-reciprocal ma-
trices, now, we shall investigate inconsistency/intransitivity property also for a-
reciprocal matrices. For this purpose we use relations between m-consistent and
a-transitive/a-consistent matrices derived in Propositions 1 to 4. Let B = {bij}
be an a-reciprocal n× n matrix with 0 < bij < 1 for all i and j. We define the
a-consistency index Iac(B) of B = {bij} as

Iac(B) = Imc(A),where A = {φ−1(bij)}. (13)

From (13) we obtain the following result which is parallel to Proposition 5.

Proposition 6. If B = {bij} is an a-reciprocal n × n fuzzy matrix with
0 < bij < 1 for all i and j, then Iac(B) ≥ 0. Moreover, B is a-consistent if
and only if Iac(B) = 0.

The proof of Proposition 6 follows directly from Proposition 4 and Proposi-
tion 5.

Now, we shall deal with measuring a-intransitivity of a-reciprocal matrices.
Recall transformation functions ϕσ and ϕ−1σ defined by (8), (9), where σ > 1 is
a given value. Let B = {bij} be an a-reciprocal n × n matrix with 0 < bij < 1
for all i and j. We define the a-transitivity index Iσat(B) of B = {bij} as

Iσat(B) = Imc(Aσ),where Aσ = {ϕ−1σ (bij)}. (14)

From (9), (14) we obtain the following result which is parallel to Propositions
5 and 6.

Proposition 7. If B = {bij} is an a-reciprocal n×n matrix with 0 < bij < 1 for
all i and j, then Iσat(B) ≥ 0. Moreover, B is a-transitive if and only if Iσat(B) = 0.

The proof of Proposition 7 follows directly from Proposition 2 and Proposi-
tion 5.

Let A = {aij} be an a-reciprocal n × n matrix. In (12), the m-consistency
ratio of A denoted by CRmc(A) is obtained by taking the ratio Imc(A) to its
mean value Rmc(n). i.e.

CRmc(A) =
Imc(A)

Rmc(n)
. (15)

The table that gives the function values of Rmc(n), n = 3, 4, ..., 15, can be found
e.g. in [9]. Similarly, we define a-consistency ratio and a-transitivity ratio. Let

Additively and Multiplicatively Transitive Fuzzy Relations in Ranking of Alternatives

176



B = {bij} be an a-reciprocal n× n matrix with 0 < bij < 1 for all i and j. We
define the a-consistency ratio CRac of B as follows

CRac(B) =
Iac(B)

Rmc(n)
. (16)

The corresponding priority vector wac = (wac1 , w
ac
2 , ..., w

ac
n ) is given by the char-

acteristic equation φ−1(B)wac = ρ(φ−1(B))wac, where φ−1(B) = {φ−1(bij))}.
Moreover, given σ > 1, we define a-transitivity ratio CRσat of B as

CRσat(B) =
Iσat(B)

Rmc(n)
. (17)

The corresponding priority vector wat = (wat1 , w
at
2 , ..., w

at
n ) is given by

ϕ−1σ (B)wat = ρ(ϕ−1σ (B)wat,

where ϕ−1σ (B) = {ϕ−1σ (bij)}. In practical DM situations a-inconsistency of a
positive a-reciprocal pairwise comparison matrixB is “acceptable” if CRac(B)<
0.1. Also, a-intransitivity of a positive a-reciprocal pairwise comparison matrix
B is “acceptable” if CRσat(B) < 0.1. The final ranking of alternatives is given
by the corresponding priority vector.

The following two results give a characterization of m-consistent matrix as
well as a-consistent one by the vectors of weights, i.e. positive vectors with sum
of elements equal to one, see [6].

Proposition 8. Let A = {aij} be a positive n × n matrix. A is m-consistent
if and only if there exists a vector w = (w1, w2, ..., wn) with wi > 0 for all
i=1,2,...,n, and

∑n
j=1 wj = 1 such that

aij =
wi
wj

for all i, j = 1, 2, ..., n. (18)

Proposition 9. Let A = {aij} be an a-reciprocal n×n matrix with 0 < aij < 1
for all i and j. A = {aij} is a-consistent if and only if there exists a vector
v = (v1, v2, ..., vn) with vi > 0 for all i=1,2,...,n, and

∑n
j=1 vj = 1 such that

aij =
vi

vi + vj
for all i, j = 1, 2, ..., n. (19)

A parallel result can be derived for a-transitive matrices.

Proposition 10. Let A = {aij} be an a-reciprocal n×nmatrix with 0 < aij < 1
for all i and j. A = {aij} is a-transitive if and only if there exists a vector
u = (u1, u2, ..., un) with ui > 0 for all i = 1, 2, ..., n, and

∑n
j=1 uj = 1 such that

aij =
1

2
(1 + nui − nuj) for all i, j = 1, 2, ..., n. (20)
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Example 1. Let X = {x1, x2, x3, x4} be the set of 4 alternatives. The prefer-
ences on X are described by the positive matrix B = {bij},

B =




0.5 0.6 0.6 0.9
0.4 0.5 0.6 0.7
0.4 0.4 0.5 0.5
0.1 0.3 0.5 0.5


 . (21)

Here, B = {bij} is a-reciprocal and a-inconsistent, as it may be directly ver-
ified by (4), e.g. b12.b23.b31 6= b32.b21.b13. At the same time, B is a-intransitive
as b12 + b23 + b31 = 1.9 6= 1.5. Now, consider σ = 9. Then we calculate

E = {φ−1(bij)} =




1 1.50 1.50 9.00
0.67 1 1.5 2.33
0.67 0.67 1 1
0.11 0.43 1 1


 ,

F = {ϕ−19 (bij)} =




1 1.55 1.55 5.80
0.64 1 1.55 2.41
0.64 0.64 1 1
0.17 0.42 1 1


 .

Further, we calculate the maximal eigenvalues ρ(E) = 4.29 and ρ(F ) = 4.15.
By (11), (16) and (17) we obtain CRac(B) = 0.11 > 0.1 with the priority
vector wac = (0.47, 0.25, 0.18, 0.10), which gives the ranking of the alternatives
as x1 > x2 > x3 > x4. Similarly, CR9

at(B) = 0.056 < 0.1 with the priority
vector wat = (0.44, 0.27, 0.18, 0.12), giving the same ranking of alternatives
x1 > x2 > x3 > x4.

As it is evident, a-consistency ratio CRac(B) is too high that matrix B
is considered a-consistent. On the other hand, a-transitivity ratio CR9

at(B)
is sufficiently low that matrix B is considered a-transitive. The ranking of
alternatives given by both methods remains, however, the same.

In this example it is evident that the values of CRac(B) and CRat(B) can be
different values for the a-reciprocal matrix B. In order to investigate a possible
relationship between the consistency and transitivity indexes of a-reciprocal
matrices, we performed a simulation experiment with randomly generated 1000
a-reciprocal matrices, (n = 4 and n = 15), then we calculated corresponding
indexes Iac and Iσat , with σ = 9. Numerical experiments have shown that there
is no particular relationship between a-consistency and a-transitivity.

4 Fuzzy preference matrix with missing elements

In many decision-making procedures we assume that experts are capable of pro-
viding preference degrees between any pair of possible alternatives. However,
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this may not be always true, which makes a missing information problem. A
missing value in the fuzzy preference matrix is not equivalent to a lack of pref-
erence of one alternative over another. A missing value can be the result of the
incapacity of an expert to quantify the degree of preference of one alternative
over another. In this case he/she may decide not to guess the preference degree
between some pairs of alternatives. It must be clear that when an expert is not
able to express a particular value bij , because he/she does not have a clear idea
of how the alternative xi is better than alternative xj , this does not mean that
he/she prefers both options with the same intensity. To model these situations,
in the following we introduce the incomplete preference relation matrix. Here,
we use different approach and notation comparing to e.g. [1].

Now, we are going to define the fuzzy preference matrix with missing ele-
ments. For the sake of simplicity of presentation we identify the alternatives
x1, x2, ..., xn with integers 1, 2, ..., n, i.e. by X = {1, 2, ..., n} we denote the set
of alternatives, n > 1. Moreover, let, X ×X=X2 be the Cartesian product of
X, i.e. X2 = {(i, j)|i, j ∈ X}. Let K ⊂ X2, K 6= X2 and B be the fuzzy pref-
erence relation on K given by the membership function µB : K → [0; 1]. The
fuzzy preference relation B is represented by the n × n fuzy preference matrix
B(K) = {bij}K with missing elements depending on K as follows

bij =

{
µB(i, j) if (i, j) ∈ K,
− if (i, j) 6∈ K.

In what follows we shall assume that each fuzzy preference matrix B(K) =
{bij}K with missing elements is a-reciprocal, i.e.

bij + bji = 1 for all (i, j) ∈ K.
If L ⊂ X2, and L = {(i1, j1), (i2, j2), ..., (iq, jq)} is a set of couples (i, j) of alter-
natives such that there exist evaluations bij , with 0 ≤ bij ≤ 1 for all (i, j) ∈ L,
then the symmetric subset L′ to L, i.e. L′ = {(j1, i1), (j2, i2), ..., (jq, iq)} is also a
subset of K, i.e. L′ ⊂ K. It is clear that by reciprocity each subset K of X2 can
be represented as follows: K = L∪L′∪D, where L is the set of couples of alter-
natives (i, j) of given preference degrees bij of the fuzzy preference matrix B(K)
and D is the diagonal of this matrix, i.e. D = {(1, 1), (2, 2), ..., (n, n)}, where
bii = 0.5 for all i ∈ X. The reciprocity property means that the expert is able to
quantify both bij and bji as well as bii. The elements bij with (i, j) ∈ X2 - K are
called the missing elements of matrix B(K). Notice that the missing elements
of B(K) are denoted by symbol ”-” (”dash”). On the other hand, the elements
- preference degrees given by the experts are denoted by bij where (i, j) ∈ K.
By reciprocity it is sufficient that the expert will quantify only the elements bij ,
where (i, j) ∈ L, such that K = L∪L′ ∪D. In what follows we shall investigate
special important situations of L, particularly, L = {(1, 2), (2, 3), ..., (n− 1, n)},
or, L = {(1, 2), (1, 3), ..., (1, n)}.

Now, we shall deal with the problem of finding the values of missing elements
of a given fuzzy preference matrix so that the extended matrix is as much a-
consistent as possible. In the ideal case the extended matrix would become
a-consistent.
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Let K ⊂ X2, let B(K) = {bij}K be a fuzzy preference matrix with missing
elements. The matrix Bac(K) = {bacij }K called the ac-extension of B(K) is
defined as follows

bacij =

{
bij if (i, j) ∈ K,
v∗i

v∗
i
+v∗

j
if (i, j) 6∈ K.

Here, v∗ = (v∗1 , v
∗
2 , ..., v

∗
n) called the ac-priority vector with respect to K is the

optimal solution of the following problem

(Pac) dac(v,K) =
∑

(i,j)∈K

(
bij − vi

vi+vj

)2
−→ min;

subject to ∑n
j=1 vj = 1, vi ≥ ε > 0 for all i = 1, 2, ..., n.

(ε is a preselected sufficiently small positive number.)

Notice, that a-consistency index of the matrix Bac(K) = {bacij }K is defined
by (13) as Iac(B

ac(K)). The proof of the following proposition follows directly
from Proposition 9.

Proposition 11. Bac(K) = {bacij }K is a-consistent, (i.e. Iac(B
ac(K)) = 0)

if and only if dac(v
∗,K) = 0.

Now, we would like to find the values of missing elements of a given fuzzy
preference matrix so that the extended matrix is as much a-transitive as possible.
In the ideal case the extended matrix would become a-transitive.
Again, let K ⊂ I2, let B(K) = {bij}K be a fuzy preference matrix with missing
elements, K = L ∪ L′ ∪D as before.

The matrix Bat(K) = {batij }K called an at-extension of B(K) with respect
to K is defined as follows

batij =

{
bij if (i, j) ∈ K,
max{0,min{1, 12 (1 + nu∗i − nu∗j )}} if (i, j) 6∈ K.

Here, u∗ = (u∗1, u
∗
2, ..., u

∗
n) called the at-priority vector with respect to K is the

optimal solution of the following problem

(Pat) dat(v,K) =
∑

(i,j)∈K
(
bij − 1

2 (1 + nui − nuj)
)2 −→ min;

subject to ∑n
j=1 uj = 1, ui ≥ ε > 0 for all i = 1, 2, ..., n.

Now, let a-transitivity index Iσat(B
at(K)) of the matrix Bat(K) = {batij }K is

defined by (14) with a given σ > 0. The next proposition follows directly from
Proposition 10.

Proposition 12. If Bat(K) = {batij }K is a-transitive (i.e. Iσat(B
at(K)) = 0),

then dat(u
∗,K) = 0.
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5 Special cases of fuzzy preference matrix with
missing elements

For a complete definition of a reciprocal fuzzy preference nn matrix we need
pairs of elements to be evaluated by an expert. For example, if n = 10, then
N = 45, which is a considerable amount of pairwise comparisons. We ask that
the expert would evaluate only around n pairwise comparisons of alternatives
which seems to be a reasonable amount. In this section we shall deal with two
important particular cases of fuzzy preference matrix with missing elements
where the expert will evaluate only n− 1 pairwise comparisons of alternatives.
Let K ⊂ I2 be a set of indexes given by an expert, B(K) = {bij}K be a fuzzy
preference matrix with missing elements. Moreover, let K = L∪L′∪D. In fact,
it is sufficient to assume that the expert will evaluate only matrix elements of
L, i.e. b12, b23, b34, ..., bn−1,n.

5.1 Case L = {(1, 2), (2, 3), ..., (n− 1, n)}
Here, we assume that the expert evaluates n−1 elements of the fuzzy preference
matrix B(K), b12, b23, b34, ..., bn−1,n. First, we investigate the ac-extension of
B(K). We derive the following result.

Proposition 13. Let L = {(1, 2), (2, 3), ..., (n − 1, n)}, 0 < bij < 1 with
bij + bji = 1 for all (i, j) ∈ K, K = L∪L′∪D, and L′ = {(2, 1), (3, 2), ..., (n, n−
1)}, D = {(1, 1), ..., (n, n)}. Then ac-priority vector v∗ =(v∗1 , v

∗
2 , ..., v

∗
n) with

respect to K is given as

v∗1 =
1

S
and v∗i+1 = ai,i+1v

∗
i for i = 1, 2, ..., n− 1, (22)

where

S = 1 +

n−1∑

i=1

ai,i+1ai+1,i+2...an−1,n and aij =
1− bij
bij

for all (i, j) ∈ K. (23)

By (13) it follows that Bac(K) = {bacij }K is a-consistent. Now, we investigate
the at-extension Bat(K) ofB(K). We obtain the following result.

Proposition 14. Let L = {(1, 2), (2, 3), ..., (n − 1, n)}, 0 < bij < 1 with
bij + bji = 1 for all (i, j) ∈ K, K = L∪L′∪D, and L′ = {(2, 1), (3, 2), ..., (n, n−
1)}, D = {(1, 1), ..., (n, n)}. Let u∗ =(u∗1, u

∗
2, ..., u

∗
n) be defined as

u∗i =
2

n2

n−1∑

j=1

αj −
2

n
αi−1 −

n− i− 1

n
for i = 1, 2, ..., n, (24)

where

α0 = 0, αj =

j∑

i=1

bi,i+1 for j = 1, 2, ..., n− 1. (25)
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If u∗ = (u∗1, ..., u
∗
n) is a vector with positive elements, then u∗ is an at-priority

vector with respect to K.

Remark. In general, the optimal solution u∗ =(u∗1, u
∗
2, ..., u

∗
n) of (Pat) does

not satisfy condition

0 ≤ 1

2
(1 + nu∗i − nu∗j ) ≤ 1, for all i, j = 1, 2, ..., n, (26)

i.e. B = {bij} = { 12 (1 + nu∗i − nu∗j )} is not a fuzzy preference matrix. We can
easily prove the necessary and sufficient condition for satisfying (26) based on
evaluations bi,i+1.

Proposition 15. Let L = {(1, 2), (2, 3), ..., (n − 1, n)}, 0 ≤ bij ≤ 1 with
bij + bji = 1 for all (i, j) ∈ K, K = L∪L′∪D, and L′ = {(2, 1), (3, 2), ..., (n, n−
1)}, D = {(1, 1), ..., (n, n)}. Then the at-extension Bat(K) = {batij }K is a-
transitive if and only if

∣∣∣∣∣

j−1∑

k=i

bk,k+1 −
j − i

2

∣∣∣∣∣ ≤
1

2
for i = 1, 2, ..., n− 1, j = i+ 1, ..., n. (27)

Example 2. Let L = {(1, 2), (2, 3), (3, 4)}, let the expert evaluations be b12 =
0.9, b23 = 0.8, b34 = 0.6, with bij + bji = 1 for all (i, j) ∈ L, let K = L ∪ L′ ∪D.
Hence B(K) = {bij}K is a fuzzy preference matrix with missing elements as
follows

B(K) =




0.5 0.9 − −
0.1 0.5 0.8 −
− 0.2 0.5 0.5
− − 0.4 0.5


 . (28)

Solving (Pac) we obtain ac-priority vector v∗ with respect to K, particularly,
v∗ = (0.864, 0.096, 0.024, 0.016). By (24) we obtain Bac(K) - ac-extension of
B(K) as follows

Bac(K) =




0.5 0.9 0.97 0.98
0.1 0.5 0.8 0.86
0.03 0.2 0.5 0.6
0.02 0.14 0.4 0.5


 , (29)

where, Bac(K) is a-consistent, as dac(v,B(K)) = 0, hence Iac(B
ac(K)) = 0.

Solving (Pat) we obtain at-priority vector u∗ with respect to K,
u∗ = (0.487, 0.287, 0.137, 0.088). Then Bat(K) is an at-extension of B(K) as

Bat(K) =




0.5 0.9 1.0 1.0
0.1 0.5 0.8 0.9
0.0 0.2 0.5 0.6
0.0 0.1 0.4 0.5


 , (30)
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where, Bat(K) is not a-transitive, as dac(v,B(K)) > 0. It can be easily verified
as I9at(B

at(K)) = 0.057.

5.2 Case L = {(1, 2), (1, 3), ..., (1, n)}
Now, we assume that the expert evaluates the pairs of a fixed element with the
remaining n − 1 elements, i.e. the fuzzy preference matrix B(K) is given by
b12, b13, ..., b1n. We investigate the ac-extension of B(K) and obtain the follow-
ing result.

Proposition 16. Let L = {(1, 2), (1, 3), ..., (1, n)}, 0 < bij < 1 with bij+bji = 1
for all (i, j) ∈ K, K = L ∪ L′ ∪ D, and L′ = {(2, 1), (3, 2), ..., (n, n − 1)}, D =
{(1, 1), ..., (n, n)}. Then ac-priority vector v∗ =(v∗1 , v

∗
2 , ..., v

∗
n) with respect to K

is given as

v∗1 =
1

V
and v∗i+1 = a1,i+1v

∗
i for i = 1, 2, ..., n− 1, (31)

where

V = 1 +

n−1∑

i=1

a1,i+1 and aij =
1− bij
bij

for all (i, j) ∈ K. (32)

We conclude that the ac-extension of B(K), i.e. matrix Bac(K) = {bacij }K
is a-consistent. Now, we investigate the at-extension matrix Bat(K) of B(K).
We can prove the following result.

Proposition 17. Let L = {(1, 2), (1, 3), ..., (1, n)}, 0 < bij < 1 with bij+bji = 1
for all (i, j) ∈ K, K = L ∪ L′ ∪ D, and L′ = {(2, 1), (3, 2), ..., (n, n − 1)}, D =
{(1, 1), ..., (n, n)}. Let u∗ =(u∗1, u

∗
2, ..., u

∗
n) be defined as follows

u∗1 =
2

n2

n−1∑

j=1

b1,j+1+
1

n2
and u∗i+1 = u∗1+

1− 2b1,i+1

n
for i = 1, 2, ..., n−1. (33)

If u∗ = (u∗1, ..., u
∗
n) is a vector with positive elements, then u∗ is an at-priority

vector with respect to K.

Remark. In general, the optimal solution u∗ =(u∗1, u
∗
2, ..., u

∗
n) of (Pat) does

not satisfy condition (26), i.e. B = {b∗ij} = { 12 (1 + nu∗i − nu∗j )} is not a fuzzy
preference matrix. By a similar way we can prove the result which is parallel to
Proposition 15.

Proposition 18. Let L = {(1, 2), (2, 3), ..., (n − 1, n)}, 0 ≤ bij ≤ 1 with
bij + bji = 1 for all (i, j) ∈ K, K = L∪L′∪D, and L′ = {(2, 1), (3, 2), ..., (n, n−
1)}, D = {(1, 1), ..., (n, n)}. Then the at-extension Bat(K) = {batij }K is a-
transitive if and only if

|b1j − b1i| ≤
1

2
for i, j = 1, 2, ..., n. (34)
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Example 3. Let L = {(1, 2), (1, 3), (1, 4)}, let the expert evaluations be b12 =
0.9, b13 = 0.8, b14 = 0.3, with bij + bji = 1 for all (i, j) ∈ L, let K = L ∪ L′ ∪D.
Hence B(K) = {bij}K is a fuzzy preference matrix with missing elements as
follows

B(K) =




0.5 0.9 0.8 0.3
0.1 0.5 − −
0.2 − 0.5 −
0.7 − − 0.5


 . (35)

Solving (Pac) we obtain ac-priority vector v∗ with respect to K, particularly,
v∗ = (0.271, 0.030, 0.068, 0.632). Then we obtain Bac(K) - ac-extension of B(K)
as

Bac(K) =




0.5 0.9 0.80 0.30
0.10 0.5 0.30 0.04
0.20 0.70 0.5 0.10
0.70 0.96 0.90 0.5


 . (36)

where, Bac(K) is a-consistent, as dac(v,B(K)) = 0, hence Iac(B
ac(K)) = 0.

Solving (Pat) we obtain at-priority vector u∗ with respect to K,
u∗ = (0.312, 0.113, 0.162, 0.412). Then Bat(K) is an at-extension of B(K) as

Bat(K) =




0.5 0.90 0.80 0.30
0.10 0.5 0.40 0.00
0.20 1.00 0.5 0.00
0.70 1.00 1.00 0.5


 , (37)

where Bat(K) is not a-transitive, as |b12 − b14| > 0.6 > 1
2 .

6 Conclusions

In this paper we have dealt with some properties of fuzzy preference relations,
particularly reciprocity, consistency and transitivity of relations given in the
form of square matrices with the entries from the unit interval. We have shown
how to measure the grade of a-consistency and/or a-transitivity, and also how
to evaluate the pairs of elements by fuzzy values. Also, we have proposed a new
method for measuring of inconsistency based on Saatys principal eigenvector
method. Moreover, we have dealt with two particular cases of the incomplete
fuzzy preference matrix, where some elements of pairwise comparison are miss-
ing. We have proposed some special methods for dealing with these cases. Two
illustrating examples have been presented to clarify our approach.
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Abstract

When combining belief functions by the conjunctive rules of combi-
nation, conflicts often appear, which are assigned to ∅ by un-normalized
conjunctive rule ∩⃝ or normalized by Dempster’s rule of combination ⊕.

This contribution is devoted to an interpretation of the conflicting part
of a belief function on a two-element frame of discernment. It is based
on the author’s idea of the unique decomposition of such function into
its conflicting and non-conflicting part (CJS 2010, Otaru). A relation of
conflicting part of a belief function to internal conflict of the function is
also studied and a new definition of internal conflict is introduced. New
internal conflict is compared with the previous approaches.

Keywords: Belief function, Dempster-Shafer theory, uncertainty, Demp-
ster’s semigroup, internal conflict, conflict between belief functions, non-
conflicting part of belief function, conflicting part of belief function.

1 Introduction

Belief functions are one of the widely used formalisms for uncertainty represen-
tation and processing that enable representation of incomplete and uncertain
knowledge, belief updating, and combination of evidence. They were originally
introduced as a principal notion of the Dempster-Shafer Theory or the Mathe-
matical Theory of Evidence [16].

When combining belief functions (BFs) by the conjunctive rules of combina-
tion, conflicts often appear, which are assigned to ∅ by un-normalized conjunc-
tive rule ∩⃝ or normalized by Dempster’s rule of combination ⊕. Combination

∗This research is supported by the grant P202/10/1826 of the Grant Agency of the Czech
Republic. The partial institutional support RVO: 67985807 is also acknowledged.
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of conflicting belief functions and interpretation of conflicts is often question-
able in real applications, thus a series of alternative combination rules was sug-
gested and a series of papers on conflicting belief functions was published, e.g.
[4, 10, 14, 15, 18]. Unfortunately, a complete nature of the conflicts is still not
satisfactorily captured.

The new measure of conflict between BFs on 2-element frame was intro-
duced at CJS 2012 (Osaka [7]). It is based on the important author’s idea of
distinguishing of internal conflicts of individual belief functions from a conflict
between the belief functions (IPMU 2010, Dortmund [4]), and on the idea of
the unique decomposition of a belief function on 2-element frame of discernment
into its conflicting and non-conflicting part (CJS 2010, Otaru [5]).

This contribution is devoted to an interpretation of the conflicting part of
a belief function on 2-element frame of discernment and to its relation to the
internal conflict of the belief function. An analysis of interpretation of the
conflicting part of a BF is followed by a new definition of internal conflict of a BF
on 2-element frame and by its comparison with previous approaches: plausibility
and combinational internal conflicts [4] and auto-conflict [15].

2 Preliminaries

2.1 General primer on belief functions

We assume classic definitions of basic notions from theory of belief functions
(BFs) [16] on finite frames of discernment Ωn = {ω1, ω2, ..., ωn}, see also [2, 3].
A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1] such that∑

A⊆Ω m(A) = 1; the values of the bba are called basic belief masses (bbm).
m(∅) = 0 is usually assumed, then we speak about normalized bba. A belief
function is a mapping Bel : P(Ω) −→ [0, 1], Bel(A) =

∑
∅̸=X⊆A m(X). A

plausibility function Pl(A) =
∑

∅̸=A∩X m(X). Due to a unique correspondence
among m and corresponding Bel and Pl, we often speak about m as about BF.

A focal element is a subset X of the frame of discernment, such that m(X) >
0. If all the focal elements are singletons (i.e. one-element subsets of Ω), then
we speak about a Bayesian belief function (BBF). An indecisive BF is a BF,
which does not prefer any ωi ∈ Ωn, it gives no decisional support for any ωi.

Dempster’s (conjunctive) rule of combination ⊕ is given as (m1 ⊕ m2)(A) =∑
X∩Y =A Km1(X)m2(Y ) for A ̸=∅, where K = 1

1−κ , κ=
∑

X∩Y =∅ m1(X)m2(Y ),
and (m1 ⊕m2)(∅) = 0, see [16]; putting K = 1 and (m1 ⊕m2)(∅) = κ we obtain
the non-normalized conjunctive rule of combination ∩⃝, see e. g. [17].

We say that BF Bel is non-conflicting when conjunctive combination of Bel
with itself does not produce any conflicting belief masses (when (Bel ∩⃝Bel)(∅) =
0. Otherwise, BF is conflicting, i.e., it contains some internal conflict [4].

Normalized plausibility of singletons1 is probability distribution Pl P (ωi) =
Pl({ωi})∑
ω∈Ω

Pl({ω})
[1, 3]; Smets’ pignistic probability BetP (ωi) =

∑
ωi∈X

m(X)
|X| [17].

1Plausibility of singletons is called contour function by Shafer in [16], thus Pl P (Bel) is a
normalization of contour function in fact.
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2.2 Belief functions on two-element frame of discernment;
Dempster’s semigroup

We assume Ω2 = {ω1, ω2}, in this study. Representing a (normalized) belief
function by enumeration of bbms we obtain a pair (a, b) = (m({ω1}),m({ω2}))
as m({ω1, ω2}) = 1 − a − b; this is called Dempster’s pair or simply d-pair in
[2, 12, 13] (it is a pair of reals such that 0 ≤ a, b ≤ 1, a + b ≤ 1).

Extremal d-pairs are the pairs corresponding to belief functions for which
either m({ω1}) = 1 or m({ω2}) = 1, i.e., ⊤ = (1, 0) and ⊥ = (0, 1). The set of
all non-extremal d-pairs is denoted as D0; the set of all non-extremal Bayesian
d-pairs (i.e. d-pairs corresponding to Bayesian BFs, where a+ b = 1) is denoted
as G; the set of d-pairs such that a = b is denoted as S (set of indecisive2

d-pairs), the set where b = 0 as S1, and analogically, the set where a = 0 as S2

(simple support BFs, simple d-pairs). Vacuous BF is denoted as 0 = (0, 0) and
there is a special BF (d-pair) 0′ = ( 1

2 , 1
2 ), see Figure 1.

Figure 1: Dempster’s semigroup D0. Homomorphism h is in this representation
a projection of D0 to group G along the straight lines (h-lines) running through
the point (1, 1). All the Dempster’s pairs lying on the same ellipse (f-ellipse,
running through points (0, 1) and (1, 0)) are mapped by homomorphism f to
the same d-pair in semigroup S.

The (conjunctive) Dempster’s semigroup D0 = (D0, ⊕, 0, 0′) is the set D0

endowed with the binary operation ⊕ (i.e. with the Dempster’s rule) and
two distinguished elements 0 and 0′. Dempster’s rule can be expressed by

the formula (a, b) ⊕ (c, d) = (1 − (1−a)(1−c)
1−(ad+bc) , 1 − (1−b)(1−d)

1−(ad+bc) ) for d-pairs [12,

13]. In D0 it is defined further: −(a, b) = (b, a), h(a, b) = (a, b) ⊕ 0′ =
( 1−b
2−a−b ,

1−a
2−a−b ), h1(a, b) = 1−b

2−a−b , f(a, b) = (a, b) ⊕ −(a, b) = (a, b) ⊕ (b, a) =

2BFs (a, a) from S are called indifferent BFs by Haenni [11].
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(a+b−a2−b2−ab
1−a2−b2 , a+b−a2−b2−ab

1−a2−b2 ); (a, b) ≤ (c, d) iff [h1(a, b) < h1(c, d) or h1(a, b) =

h1(c, d) and a ≤ c] 3. For principal properties of D0 and its subalgebras see e.g.
[2, 12, 13].

Let us denote h−1(a, b) = {(u, v) | h(u, v) = (a, b)} and similarly f−1(a, b) =
{(u, v) | f(u, v) = (a, b)}. Using h−1 and f−1, we can express ⊕ as:

((a, b) ⊕ (c, d)) = h−1(h(a, b) ⊕ h(c, d)) ∩ f−1(f(a, b) ⊕ f(c, d)).

On Ω2 we have further, Bel({ω1}) = a, Bel({ω2}) = b, Pl({ω1}) = 1 − b,
Pl({ω2}) = 1−a, Pl P (ω1) = 1−b

2−a−b , Pl P (ω2) = 1−a
2−a−b . (a, b)∩⃝(c, d) = ( a(1−

d)+c(1−a−b), b(1−c)+d(1−a−b); (1−a−b)(1−c−d)), m(a,b) ∩⃝(c,d)(∅) = ad+bc,

BetP (ω1)=
1+a−b

2 , BetP (ω2)=
1+b−a

2 .

2.3 Conflicts of belief functions

Internal conflicts IntC(mi) which are included in particular individual BFs are
distinguished from conflict between BFs C(m1,m2) in [4]; the entire sum of
conflicting masses is called total conflict TotC(m1,m2) = (m1 ∩⃝m2)(∅); and
three approaches to conflicts were introduced: combinational, plausibility and
comparative.

Unfortunately, there are not yet any precise formulas, but only bounding
inequalities for combinational conflicts: ,

1

2
TotC(m,m)) ≤ cb-IntC(m) ≤ TotC(m, m)

TotC(m1, m2)−(cb-IntC(m1)+cb-IntC(m2)) ≤ cb-C(m1,m2) ≤ TotC(m1, m2).

Internal plausibility conflict of BF Bel is defined as Pl-IntC(Bel) = 1 −
maxω∈ΩPl({ω}), where Pl is the plausibility equivalent to Bel. On Ω2 we have
Pl-IntC(a, b) = 1 − max(1 − b, 1 − a) = min(a, b).

Plausibility conflict between BFs Bel1 and Bel2 is defined by the formula
Pl-C(Bel1, Bel2)=min(

∑
ω∈ΩP lC(Bel1,Bel2)

1
2 |Pl P (Bel1)(ω)−Pl P (Bel2)(ω)|,

(m1 ∩⃝m2)(∅) ), where ΩPlC(Bel1, Bel2) is the set of elements ω ∈ Ω with con-
flicting Pl P masses [4, 8, 9]. BFs (a, b) and (c, d) on Ω2 are mutually non-
conflicting when a ≥ b & c ≥ d or a ≤ b & c ≤ d (i.e., Pl-C = 0); otherwise, we
have Pl-C((a, b), (c, d)) = | 1−b

2−a−b − 1−d
2−c−d | = | 1−a

2−a−b − 1−c
2−c−d |.

The idea of comparative conflictness / non-conflictness is a specification
of bbms to smaller focal elements such that fit to focal elements of the other
BF as much as possible. The comparative conflict between BFs Bel1 and Bel2
cp-C(m1,m2) is defined as the least difference of such more specified bbms
derived from the input m1 and m2. On Ω2 it is a (partial) specification of
mi({ω1, ω2}) to singletons, i.e., specification of 1−a−b to a if a<c and/or to b
if b<d and analogically specification of 1−c−d to c if c<a and/or to d if d<b.
There is no internal conflict defined in the case of comparative conflict.

Analogy of internal conflict is Martin’s auto-conflict [15] defined as (m∩⃝m)(∅),
i.e., it is TotC(m,m) in fact. On Ω2 we have ((a, b)∩⃝(a, b))(∅) = 2ab.

3Note, that h(a, b) is an abbreviation for h((a, b)), similarly for h1(a, b) and f(a, b).
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3 State of the Art

3.1 Decomposition of a belief function to its non-conflicting
and conflicting part

We will use the important property of Dempster’s sum, which is respecting the
homomorphisms h and f , i.e., respecting the h-lines and f -ellipses, when two
BFs are combined on two-element frame of discernment [2, 12, 13], see Figure 1.
Using this property we obtain the following statement, see Figure 2.

y

z= (0,1)

(1,0) =0 = (0,0)

( , )s s
( , )a b

( )b,a

0' = (     ,     )1 2
1 2

( , )f a  b0 0

f s s x x( , ) = ( , )

f a,b( )

( , )a  b0 0

( )ab ,0 0

h b,a( )

h a,b( )

Figure 2: Conflicting and non-conflicting part of a BF (a, b) on 2-element frame
of discernment.

Theorem 1 Any BF (a, b) on 2-element frame of discernment Ω2 is Demp-
ster’s sum of its unique non-conflicting part (a0, b0) ∈ S1 ∪ S2 and of its
unique conflicting part (s, s) ∈ S, which does not prefer any element of Ω2,

i.e. (a, b) = (a0, b0) ⊕ (s, s). It holds true that s = b(1−a)
1−2a+b−ab+a2 = b(1−b)

1−a+ab−b2

and (a0, b0) = (a−b
1−b , 0), (a, b) = (a−b

1−b , 0) ⊕ (s, s) for a ≥ b; and similarly that

s = a(1−b)
1+a−2b−ab+b2 = a(1−a)

1−b+ab−a2 and (a0, b0) = (0, b−a
1−a ) for a ≤ b.

For proof see [6].

3.2 Conflict between belief functions

Using of the unique decomposition of a BF (a, b) on Ω2: (a, b) = (a0, b0)⊕ (s, s),
a new definition of conflict between BFs on 2-element frame of discernment was
defined at CJS 2012, Osaka [7]:
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Definition 1 Let Bel′, Bel′′ be two belief functions on 2-element frame of dis-
cernment Ω2 = {ω1, ω2}. Let Bel′0 ⊕ Bel′S = Bel′ and Bel′′0 ⊕ Bel′′S = Bel′′ be
their decompositions into their non-conflicting and conflicting parts. We define
conflict between BFs Bel′ and Bel′′ as Conf(Bel′, Bel′′) = mBel′0 ∩⃝Bel′′0

(∅).

We can compute conflict between any 2 BFs from D+
0 as it follows:

Theorem 2 Let (a, b), (c, d) be arbitrary BFs defined on 2-element frame of dis-
cernment. Conflict between (a, b) and (c, d) is given by the following expression:
Conf((a, b), (c, d)) = a−b

1−b · d−c
1−c if a>b & c<d,

Conf((a, b), (c, d)) = b−a
1−a · c−d

1−d if a<b & c>d, Conf((a, b), (c, d))=0 otherwise.

For proof and other properties of Conf see [7].

4 Interpretation of a Conflicting Part

Summarizing the present state of the art, according to CJS 2010, Otaru [5],
we have a decomposition Bel = Bel0 ⊕ BelS ( (a, b) = (a0, b0) ⊕ (s, s) ) of
any BF Bel = (a, b) on a 2-element frame of discernment. Bel0 = (a0, b0) is
its non-conflicting part, it has no internal conflict, it is a simple BF (simple
support BF) in S1 or S2. On the other hand BelS = (aS , bS) = (s, s), which
is indecisive (i.e., it has the same decisional supports for both the elements of
the frame of discernment), bears all internal conflict of Bel. The importance of
non-conflicting Bel0 is its decisional support for one of the elements and also its
principal role in the new definition of conflict between two BFs on a 2-element
frame of discernment, see CJS 2012, Osaka [7]. What is an interpretation of
BelS? We try to answer this question in this section.

4.1 Conflicting part as an internal conflict?

The simplest interpretation of conflicting part of a belief function (or of its
components) is internal conflict of the BF.

Let us start with a simple case of indecisive belief functions from semigroup
S. We have Bel0 = 0 and BelS = Bel = (s, s) in this case, thus the decomposi-
tion is trivial Bel = 0⊕Bel in this case. There is no problem with interpretation
in this case. 0 = (0, 0) is non-conflicting, thus its conflicting part is 0 = (0, 0)
with both components equal to zero and internal conflict is also 0. Increasing s,
the same support to both elements of the frame of discernment and also both
components of conflicting part increase up to 1

2 for 0′ = ( 1
2 , 1

2 ) with the greatest
conflicting part 0′. 0′ has also the greatest internal conflict of BFs on S. Thus
s nicely represents the internal conflict of a BF on S.

0 = (0, 0) is also conflicting part of any non-conflicting BF from S1 and S2

with no (i.e., zero) internal conflict.
The problems start for Bayesian BFs from G: all BBFs have the same con-

flicting part 0′ = ( 1
2 , 1

2 ), thus if we keep the above interpretation internal conflict
of all BBFs should be same as that of 0′. But this does not hold true, especially
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for categorical BFs (0, 1) and (1, 0), which are both (individually) non-conflicting
(i.e. they have zero internal conflicts; of course, there is full conflict between
them).

Analogously for any other set of BFs with the same conflicting part, where
internal conflict should decrease towards categorical BFs and it should be close
to zero in surrounding of categorical BFs.

Thus we cannot interpret conflicting part of a BF (or component(s) of the
conflicting part) to be an internal conflict of the BF.

4.2 Conflicting part as a relative internal conflict

The nice property of conflicting parts of BFs from S holds true also for any set
of BFs with the same non-conflicting part, thus with the same Pl P , i.e. for BFs
on an intersection of some h-line with the triangle of BFs on Ω2. Both internal
conflict and the conflicting part are 0 (0 resp. 0 = (0, 0)) for the intersection
of h-line with Si; both internal conflict and the conflicting part are maximal
for the intersection of h-line with G; and both internal conflict (Pl-IntC, m(∅),
thus also both bounds of cb-IntC) and the conflicting part increase between
the above two intersections. Hence, we can interpret conflicting part BelS of
BF Bel as its relative internal conflict (a relative internal conflict of the BF
Bel = Bel0 ⊕ BelS with non-conflicting part Bel0 and conflicting part BelS).

5 A New Definition of Internal Conflict

5.1 Definition 2

Using the above interpretation of conflicting part of BFs on 2-element frame of
discernment Ω2 = {ω1, ω2} (and using Pl P , which is constant for BFs with a
fixed non-conflicting part), we can define internal conflict of a BF Bel defined
on Ω2 as it follows:

IntC(Bel) = (BelS({ω1}) + BelS({ω2})) · min(Pl P (ω1), P l P (ω2)), (1)

IntC(a, b) = (aS + bS) min(
1 − b

2−a−b
,

1 − a

2−a−b
) = 2s min(

1 − b

2−a−b
,

1 − a

2−a−b
).

5.2 Properties and comparison with previous approaches

For BFs from D≥0
0 , where a ≥ b, we have simply IntC(a, b) = 2s 1−a

2−a−b , for BFs

from D≤0′

0 , where a ≤ b, we have IntC(a, b) = 2s 1−b
2−a−b , and specially for BFs

from S, where a = b, we have simply IntC(a, b) = 2s 1−a
2−a−b = s. Thus IntC

has the nice property described in Subsection 4.1 for BFs from S.
From the last expression we, further, obtain the following observation.

Observation 1 IntC defined by (1) coincides with Pl-IntC for BFs from S.

For simple BFs from S1 and S2 we observe the following:
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Observation 2 IntC defined by (1) is equal to 0 for all simple (simple support)
BFs, thus it coincides with Pl-IntC, cb-IntC and with auto-conflict for all BFs
from S1 and S2.

Comparing IntC with the previous definitions of internal conflict we obtain
the following lemmata.

Lemma 1 IntC defined by (1) is greater or equal to cb-IntC and auto-conflict
for all indecisive BFs (BFs from S). Equality holds true just for 0 in the case
of cb-IntC; IntC is further compatible with the definition of cb-IntC for 0′ (it
coincides with the upper bound of cb-IntC for 0′. Equality holds true just for 0
and 0′ in the case of auto-conflict.

Proof. A proof follows the expressions for cb-IntC and auto-conflict on S:
s2 ≤ cb-IntC(s, s) ≤ 2s2 and m(s,s) ∩⃝(s,s)(∅) = 2s2.

Lemma 2 (i) IntC defined by (1) coincides with Pl-IntC for BFs from G.
(ii) IntC defined by (1) is compatible with the bounds of cb-IntC for BFs from
G. It is equal to the cb-IntC’s upper bound for 0′ and coincides with cb-IntC
(it is equal to both bounds of cb-IntC) for (0, 1) and (1, 0).

Proof. A proof follows the expressions for Pl-IntC and cb-IntC on G:Pl-IntC(a,
1−a) = min(a, 1−a), a(1−a) ≤ cb-IntC(s, s) ≤ 2a(1−a) and max(a, 1−a) ≥ 1

2 ,
2max(a, 1 − a) ≥ 1.

Corollary 1 IntC defined by (1) is less or equal to auto-conflict for all Bayes-
ian BFs (BFs from G). Equality holds true just for 0′ = ( 1

2 , 1
2 ), (0, 1) and for

(1, 0).

Proof. A proof follows the expression for auto-conflict on G: m(a,1−a) ∩⃝(a,1−a)(∅)
= 2a(1 − a).

We have seen that IntC coincides with Pl-IntC on the border of D0 (S1, S2,
G) and on S. It does not hold true for all BFs from D0, see e.g. ( 1

2 , 1
4 ):

IntC( 1
2 , 1

4 ) = 4
15 , whereas Pl-IntC( 1

2 , 1
4 ) = 4

16 . Equality of IntC and Pl-IntC
for fixed b = 1

4 holds true only for a = 1
4 and a = 3

4 in the case of a ≥ b; similarly
for b fixed to 1

10 , 4
10 or to another values. (IntC( 1

2 , 1
10 ) = 5

42 > Pl-IntC( 1
2 , 1

10 ) =
1
10 , IntC( 1

2 , 4
10 ) = 40

99 > Pl-IntC( 1
2 , 4

10 ) = 4
10 .) We can summarize a relation of

IntC and Pl-IntC as it follows.

Theorem 3 IntC defined by (1) coincides with Pl-IntC on the border of D0

(on its subalgeras S1, S2, G) and on S.

Hypothesis 1 IntC(Bel) ≥ Pl-IntC(Bel) for any belief function defined on
a 2-element frame of discernment Ω2, where equality holds true for any Bel
defined on S, S1, S2, G.

Analogically, we can summarize a relations of IntC to cb-IntC and to auto-
conflict. A general relation of IntC to auto-conflict is more complicated than
its relation to Pl-IntC and cb-IntC.
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Theorem 4 IntC defined by (1) is compatible with cb-IntC on the border of
D0 (on its subalgeras S1, S2, G) and IntC ≥ cb-IntC on S.

Hypothesis 2 IntC(Bel) is compatible with limits of cb-IntC(Bel) or it is
greater than cb-IntC(Bel) for any belief function defined on a 2-element frame
of discernment Ω2.

Theorem 5 IntC defined by (1) is less or equal to auto-conflict on the border
of D0 (on its subalgeras S1, S2, G), equality holds true for S1, S2 and 0′;
IntC is greater or equal to auto-conflict on S, equality holds true for 0 and 0′.

Statements of the Theorems 3 – 5 follow Observations 1, 2, Lemmata 1, 2
and Corollary 1.

6 Conclusion

This contribution presents theoretical results regarding conflicts of belief func-
tions defined on two-element frame of discernment. Interpretation of conflicting
part of belief functions is analysed here. Based on this analysis a new defini-
tion of internal conflict of belief functions is introduced. Basic properties of
internal conflict according to the new definition and its comparison with pre-
vious approaches (plausibility internal conflict, combinational internal conflict
and auto-conflict) are presented, especially for simple belief functions, indecisive
belief functions, and Bayesian belief functions.

For general belief functions on two-element frame the comparison is partly
sketched in form of hypotheses and remains as a topic for further research.

This theoretical contribution improves general understanding of conflict of
belief functions and entire nature of belief functions. Correct understanding of
conflicts may, consequently, improve a combination of conflicting belief functions
in practical applications of belief functions.
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Abstract

In this paper we deal with transferable utility games (TU-games).
Each TU-game is characterized by a set of players and a real-valued func-
tion on the power set of the player set. We fix the player set and identify a
TU-game with a function in this paper. Then the set of TU-games forms
a linear space with respect to ordinary function addition and scalar multi-
plication. We consider some bases in this space, one of which is new. The
following topics are investigated: Relationships among the coefficients of
linear combination representation of a game by the bases, characterization
of additive games and convex games, description of the Shapley value of
a game in terms of the coefficients by the bases, and the expressions of
the multilinear extension and the Lovász extension of a game.

1 Introduction

Among cooperative games, TU-games are fundamental and important. In this
paper we fix the player set and identify a TU-game with a function defined
on the power set of the player set. The value of a function for each subset is
called the worth. Then the set of TU-games forms a linear space with respect
to ordinary function addition and scalar multiplication.

When we introduce the unanimity games, they are linearly independent and
forms a basis in the linear space. The coefficients of the linear combination
representation of a game are called the Harsanyi dividends [4, 5] and provide
a number of interesting results. We may introduce other bases, and in fact
Driessen, Khmelnitskaya and Sales introduced the basis consisting of comple-
mentary unanimity games. In this paper we introduce the basis consisting of
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support games. If we regard the unanimity game as a conjunctive support game,
the support game is a disjunctive support game. Moreover it is closely related
to the complementary unanimity game.

In this paper we investigate the following topics. 1) Relationships among the
coefficients of linear combination representation of a game by the above bases.
2) Characterization of important classes of games such as additive games and
convex games. 3) Description of the Shapley value of a game in terms of the
coefficients by the above bases. 4) Expressions of multilinear extensions and
Lovász extensions of games by the coefficients.

Throughout this paper we distinguish proper inclusion S ⊂ N from ordinary
inclusion S ⊆ N . We denote the number of elements in a set by its corresponding
small letter, i.e., s = |S|, t = |T |, s′ = |S′|, and so on. We also use some
simplified notations such as v(i) = v({i}), S ∪ i = S ∪ {i}, and so on.

2 The linear space of transferable utility games
and some bases

Let N = {1, 2, . . . , n} be a finite set of players. A transferable utility game
(TU-game) on N is a function v : 2N → R satisfying that v(∅) = 0. We denote
the set of all TU-games on N by GN or simply G, because N is fixed throughout
this paper.

It is clear that G is a 2n− 1 dimensional linear space with ordinary addition
and scalar multiplication of functions. We can consider some bases in G.

1) Identity games (standard basis games): For any nonempty T ⊆ N ,

eT (S) =

{
1 if S = T,
0 if S 6= T.

This basis corresponds to the standard basis in the Euclidean space and

v =
∑

∅6=T⊆N
v(T )eT .

2) Unanimity games: For any nonempty T ⊆ N

uT (S) =

{
1 if S ⊇ T,
0 otherwise.

The worth uT (S) is 1 if all the players in T are included in S and is 0 otherwise.
In this sense the players in T support the game conjunctively.

v =
∑

∅6=T⊆N
d(T )uT .

The coefficients d(T ) are called the Harsanyi dividends (Harsanyi [4, 5]) or the
Möbius transform (Grabisch, Marischal and Roubens [3]) of v.
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3) Complementary unanimity games: For any T ⊂ N

ūT (S) =

{
1 if S ⊆ N \ T, S 6= ∅, i.e., if S ∩ T = ∅, S 6= ∅,
0 otherwise

This basis was introduced by Driessen, Khmelnitskaya and Sales [2]. The worth
ūT (S) is 1 if no player in T is contained in a nonempty set S and is 0 otherwise.
In this sense any player in T is a veto player.

v =
∑

T⊂N
d̄(T )ūT .

4) Support games: For any nonempty T ⊆ N

wT (S) =

{
1 if S ∩ T 6= ∅,
0 otherwise.

The worth wT (S) is 1 if some player in T is contained in S and is 0 otherwise.
In this sense any player in T can support the game disjunctively and therefore
we call this game wT a support game by T .

v =
∑

∅6=T⊆N
γ(T )wT .

Definition 1 A game v ∈ G is convex if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for all S, T ⊆ N . If −v is convex, v is said to be concave.

Proposition 1 1) For each nonempty T ⊆ N , the unanimity game uT is con-
vex.
2) For each T ⊂ N , the complementary unanimity game ūT is subadditive.
However it is generally neither convex nor concave.
3) For each nonempty T ⊆ N , the support game wT is concave.

Proposition 2 For each nonempty T ⊂ N

wT (S) = 1− ūT (S)

for any nonempty subset S of N .

Remark 1 In the complementary unanimity game basis, the game ū∅ is added
to the set {ūT |∅ 6= T ⊂ N}. On the other hand in the support game basis,
the game wN is added to the set {wT | ∅ 6= T ⊂ N}. We should note that
ū∅(S) = wN (S) = 1 for any nonempty S ⊆ N .
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3 Relationships among the representations by
the bases

In this section we consider relationships among the representations by the bases.
Namely we try to represent the coefficients by other coefficients.

v(S) =
∑

∅6=T⊆N
d(T )uT (S) =

∑

∅6=T⊆S
d(T )

v(S) =
∑

T⊂N
d̄(T )ūT (S) =

∑

T∩S=∅
d̄(T )

v(S) =
∑

∅6=T⊆N
γ(T )wT (S) =

∑

T∩S 6=∅
γ(T )

The coefficients d̄(T ) and γ(T ) are closely related to the co-Möbius transform
b(T ) of v given by

b(T ) =
∑

S⊇N\T
(−1)n−sv(S)

in Grabisch et al. [3]. In view of the result in [3], for any nonempty subset S of
N

v(S) =
∑

T⊆N\S
(−1)tb(T ) =

∑

T⊂N,T∩S=∅
(−1)tb(T )

Therefore,

d̄(T ) = (−1)tb(T ), ∀T ⊂ N, and γ(T ) = (−1)t−1b(T ), ∅ 6= ∀T ⊆ N.

Lemma 1 For T ⊂ S ⊆ N , it holds that
∑

T⊆R⊆S
(−1)r = 0.

Proposition 3 (e.g. Grabisch [3]) For a nonempty subset S of N ,

d(S) =
∑

∅6=T⊆S
(−1)s−tv(T )

Proposition 4 (Driessen et al. [2]) For a proper subset S of N ,

d̄(S) =
∑

T⊇N\S
(−1)s−n+tv(T ).

Theorem 1 For each nonempty S ⊆ N

γ(S) =
∑

T⊆S
(−1)t−1v((N \ S) ∪ T ) =

∑

T⊇N\S
(−1)s−n+t−1v(T )

Theorem 2 For a nonempty S ⊆ N ,

d(S) = (−1)s−1
∑

T⊇S
γ(T )
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Theorem 3 For a nonempty S ⊆ N ,

γ(S) = (−1)s−1
∑

T⊇S
d(T )

Theorem 4 For each S ⊂ N

d̄(S) =




−γ(S) if ∅ 6= S ⊂ N,∑

∅6=T⊆N
γ(T ) if S = ∅.

Conversely, for each nonempty S ⊆ N

γ(S) =




−d̄(S) if ∅ 6= S ⊂ N,∑

T⊂N
d̄(T ) if S = N.

Theorem 5 For each nonempty S ⊆ N

d(S) = (−1)s−1
∑

S 6⊆T⊂N
d̄(T ).

Conversely, for each S ⊂ N

d̄(S) = (−1)s
∑

∅6=T⊇S
d(T ).

4 Characterization of some classes of games

In this section we characterize two important classes of games, i.e. additive
games and convex games, in terms of the coefficients of the basis representations.

4.1 Additive games

Definition 2 A game v ∈ G is said to be additive if

v(S ∪ T ) = v(S) + v(T ), ∀S, T ⊆ N, S ∩ T = ∅

The following proposition is known well and the two theorems are new.

Proposition 5 A game v is additive if and only if d(S) = 0 for all S ⊆ N with
s > 1. In this case d(i) = v(i) for all i ∈ N .

Theorem 6 A game v is additive if and only if d̄(S) = 0 for all S ⊂ N with

s > 1 and d̄(∅) +
∑

i∈N
d̄(i) = 0. In this case d̄(i) = −v(i) for all i ∈ N .

Theorem 7 A game v is additive if and only if γ(S) = 0 for all S ⊆ N with
s > 1. In this case γ(i) = v(i) for all i ∈ N .
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4.2 Convex games

The following two equivalent propositions provide the necessary and sufficient
conditions for the convexity of games in terms of the dividends.

Proposition 6 (Kuipers, Vermeulen and Voorneveld [6]) A game v ∈ G
is convex if and only if ∑

T⊆S
d(T ∪ {i, j}) ≥ 0

for all i, j ∈ N (i 6= j) and all S ⊆ N \ {i, j}.

Proposition 7 (Chateauneuf and Jaffray [1]) A game v ∈ G is convex if
and only if ∑

i,j∈R⊆S
d(R) ≥ 0,

for all S ⊆ N with i 6= j ∈ S.

We can also characterize convex games as follows.

Theorem 8 A game v ∈ G is convex if and only if

∑

T⊆S
γ(T ∪ {i, j}) ≤ 0

for all i, j ∈ N (i 6= j) and all S ⊆ N \ {i, j}.

Theorem 9 A game v ∈ G is convex if and only if

∑

{i,j}⊆R⊆S
d̄(R) ≥ 0,

for all S ⊂ N with i 6= j ∈ S and

∑

{i,j}6⊆R⊂N
d̄(R) ≤ 0

for all i, j ∈ N with i 6= j.

5 Shapley Values

The Shapley value for v ∈ G is the most fundamental single-valued solution
(Shapley [9]). Let π be a permutation on N and define the marginal contribution
vector mπ(v) = (mπ

1 (v), . . . ,mπ
n(v)) at π for v by

mπ
i (v) = v(P (π, i) ∪ {i})− v(P (π, i))
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where P (π, i) = {j ∈ N |π(j) < π(i)}. Then the Shapley value for v is defined
by

ϕ(v) =
1

n!

∑

π∈ΠN

mπ(v)

where ΠN denoted the set of all permutations on N .

The Shapley values can be obtained from the coefficients by the bases. As
for the formula by the Harsanyi dividends is known well. The other two repre-
sentations are obtained in this paper.

Theorem 10 The Shapley value of a game v ∈ G is given by

ϕi(v) =
∑

T3i

d(T )

t
=
∑

T3i

γ(T )

t
=

1

n

∑

T⊂N
d̄(T )−

∑

N⊃T3i

d̄(T )

t
.

6 Extensions

A game v ∈ G is a function from 2N to R. Since each coalition S ∈ 2N can be
identified with the vector eS ∈ {0, 1}n defined by eSi = 1 if i ∈ S and eSi = 0
otherwise. Therefore v can be regarded as a function from {0, 1}n to R. Then
we may consider to extend the domain to [0, 1]n. Namely we may extend v to a
function ξv : [0, 1]n → R. Two typical examples of extensions are the multilinear
extension and the Lovász extension. In this section we consider the expressions
of these extensions in terms of the coefficients of the basis representations. As
for the results concerning the Harsanyi dividends are known well.

6.1 Multilinear extensions

The multilinear extension of v is defined by the following formula (Owen [8]).

mv(x) =
∑

S⊆N


∏

i∈S
xi
∏

i6∈S
(1− xi)


 v(S).

Theorem 11 The multilinear extension of v ∈ G is given by

mv(x) =
∑

∅6=T⊆N

(∏

i∈T
xi

)
d(T ) =

∑

∅6=T⊆N

(
1−

∏

i∈T
(1− xi)

)
γ(T )

=
∑

T⊂N

(∏

i∈T
(1− xi)−

∏

i∈N
(1− xi)

)
d̄(T ),

where
∏

i∈∅
(1− xi) is supposed to be 1.
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6.2 Lovász extensions

Given a vector x ∈ [0, 1]n, we define the following level sets:

[x]h = {i ∈ N | xi ≥ h}, h ∈ [0, 1].

Then the Lovász extension of v can be defined as follows (Lovász [7]):

lv(x) =

∫ 1

0

v([x]h)dh.

Theorem 12 The Lovász extension of v ∈ G is given by

lv(x) =
∑

∅6=T⊆N

(
min
i∈T

xi

)
d(T ) =

∑

∅6=T⊆N

(
max
i∈T

xi

)
γ(T )

=
∑

T⊂N

(
max
i∈N

xi −max
i∈T

xi

)
d̄(T ),

where max
i∈∅

xi is supposed to be 0.
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Abstract

We present a new method of color images reduction, which is based on
the direct F-transform with a generalized fuzzy partition. We show that
complexity of this method is linear. We also analyze measures (MSE and
SSIM) that are commonly used for estimation a quality of reduced images
and see that all these measures have better values on the newly proposed
method.

Keywords: F-transform, generalized partition, image reduction, MSE,
SSIM

1 Introduction

Various signal processing methods have been developed rapidly in recent decades
to address numerous problems of multimedia and communications applications,
as well as of ever increasing signal processing software. This work is focused on
the issue of image reduction which is connected with a compact visual represen-
tation of an image required by mobile phones, photo cameras, tablets, etc.

There are at least two different meanings of image reduction. In [3], image
reduction is considered as a (shrinking) operator which reduces the resolution
of an image in order to speed up computations. Usually a low-pass filter is used
for this purpose. In [1], image reduction is understood as a technique which
similar to the image compression, aims at

(i) minimization of the number of bits required to represent an image,

(ii) maintaining acceptable quality of a reduced image.

In our paper, we consider the problem of image reduction in the second meaning.
In this paper, we present a new method based on the direct F-transform

for color image reduction. We justify its suitability for image reduction proving
that the sequential application of the direct and inverse F-transform to an image
works as an approximator. We analyze how a quality of approximation by
the inverse F-transform depends on the choice of basic functions in a fuzzy
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partition. Moreover, we estimate complexity of a corresponding algorithm for
image reduction.

We compare the results obtained using the new F-transform based reduction
algorithm with the ones obtained using interpolation and aggregation. The
comparison is performed on the basis of (i) two quality measures: MSE and
SSIM, (ii) computation time and (iii) noise removing ability. The measure SSIM
is used to estimate a quality of compression made by JPEG and JPEG2000, and
this is the reason why it was selected. Moreover, we discuss what actually is
measured by quality measures MSE and SSIM.

2 Image reduction methods

2.1 Preliminaries: Image reduction and quality measures

This work is focused on the issue of image reduction – a technique which aims at
a compact representation, while maintaining acceptable quality. Let us explain
this characterization using denotation that will be kept throughout this paper.

A (gray-scale) image is identified with a representing it (intensity) function
u : [1, N ] × [1,M ] → [0, 255] where the domain [1, N ] × [1,M ] = {(i, j) | i =
1, . . . , N ; j = 1, . . . ,M} and the range [0, 255] contain only natural numbers.
A color RGB-image is represented by three intensity functions uR, uG and uB ,
each in the respective color band. If not explicitly mentioned, we assume that
the image is gray-scale. A reduced (compact) representation ū : n×m→ [0, 255]
of u is determined by the reduction ratio ρ = NM

nm where n < N , m < M , and
N,M (n,m) are respective sizes of u and its reduction ū. Usually, the reduction
ratio is written in the form ρ : 1.

In this paper, we assume that reduction is performed on the basis of the
“block-to-pixel” scheme. This means that the domain [1, N ]×[1,M ] of the image
function u is divided intoNb×Mb-sized blocks B1,1, . . . , Bn,m, whereNb·Mb = ρ,
each block Bi,j is replaced by one pixel (i, j) and this pixel is assigned a new
intensity value ū(i, j). The way how this value is computed specifies the method:
subsampling, interpolation [3], aggregation [1], F-transform (below).

The following two criteria: MSE or SSIM are chosen for estimation quality
of a reconstructed image and comparison between various reduction methods
including the one proposed in this paper. Below, we characterize each criterion
and explain why it has been selected.

Mean Square Error (shortly, MSE)

MSE(u, û) =

∑N
i=1

∑M
j=1(u(i, j)− û(i, j))2

NM
, (1)

where u denotes an original image and û its reconstruction. It is easy to see
that MSE is a squared Euclidean distance between u and û in the corresponding
vector space.

Structure Similarity Index (shortly SSIM)
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SSIM(u, û) = f(`(u, û), c(u, û), s(u, û)) (2)

is a compound function that includes measures of luminance `, contrast c and
structure s. The detailed expression of SSIM requires extended explanations and
thus, is omitted. SSIM was introduced with the purpose to measure the quality
of a single (gray-scale) image by comparing it with the ideal representation
of the same image. Similarly to MSE, the SSIM value of a color image can
be obtained as an arithmetic mean of three SSIM values in each color band.
Opposite to MSE, the SSIM value measures a similarity of two images according
to the principle: the higher, the better. We chose SSIM because it shows to be
consistent with a human eye perception and moreover, it is used to estimate a
quality of compression made by JPEG and JPEG2000.

3 F-transform for Functions of One Variable

In this section, we introduce a new modification of the method of F-transform
and explain how it differs from the original version in [4]. We remind that
according to [4], the F-transform of a function f of one variable is determined
by a fuzzy partition of the domain of f . A fuzzy partition consists of a finite
set of basic functions (fuzzy sets) that are characterized axiomatically.

The proposed modification consists in using less axioms in the definition of
fuzzy partition. Especially, we drop three of them: normality, convexity and
orthogonality (the latter is also known as the Ruspini condition). As a result, a
newly defined generalized fuzzy partition has additional degrees of freedom that
can be tuned. In the case of image reduction, this fact leads to better results
than were announced in [1].

3.1 Generalized fuzzy partitions

A generalized fuzzy partition appeared in [6] in connection with the notion of the
higher-degree F-transform. Its even weaker version was implicitly introduced
in [2] for the purpose of meeting the requirements of image compression. We
summarize both these notions and propose the following definition.

Definition 1 Let [a, b] be an interval on the real line R, n ≥ 2, and let x1, . . . , xn
be nodes such that a ≤ x1 < . . . < xn ≤ b. Let [a, b] be covered by the intervals
[xk − h′k, xk + h′′k ] ⊆ [a, b], k = 1, . . . , n, such that their left and right margins
h′k, h

′′
k ≥ 0 fulfill h′k + h′′k > 0.

We say that basic functions A1, . . . , An : [a, b] → [0, 1] constitute a gen-
eralized fuzzy partition of [a, b] (with nodes x1, . . . , xn and margins h′k, h

′′
k,

k = 1, . . . , n), if for every k = 1, . . . , n, the following three conditions are ful-
filled:

1. (locality) — Ak(x) > 0 if x ∈ (xk − h′k, xk + h′′k), and Ak(x) = 0 if
x ∈ [a, b] \ (xk − h′k, xk + h′′k);
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2. (continuity) — Ak is continuous on [xk − h′k, xk + h′′k ];

3. (covering) — for x ∈ [a, b],
∑n

k=1Ak(x) > 0.

It is important to remark that by conditions of locality and continuity,

∫ b

a

Ak(x)dx > 0.

In what follows, we will omit the word “generalized” whenever we refer to a fuzzy
partition. Moreover, we assume that in every below considered partition, basic
functions A1, . . . , An are normalized in the sense that Ak(xk) = 1, k = 1, . . . , n.

The illustration of (h, h′)-uniform fuzzy partitions where h = 3 and h′ = 2
is in Fig. 1.

Figure 1: Generalized (3, 2)-uniform fuzzy partitions: triangular-shaped (left)
and sinusoidal-shaped (right).

3.2 Direct F-transform

In this Section, we give a definition of the integral and discrete (direct) F-
transform according to [4] and recall those properties of it that will be used for
image reduction. We assume that the universe is an interval [a, b] and x1 <
. . . < xn are fixed nodes from [a, b] such that x1 = a, xn = b and n ≥ 2. Let
A1, . . . , An be basic functions that form a fuzzy partition of [a, b] according to
Definition 1. The latter will be fixed throughout this Section. Let C([a, b]) be
the set of continuous functions on the interval [a, b]. The following definition
introduces the integral F-transform of a function f ∈ C([a, b]).

Definition 2 Let A1, . . . , An be basic functions that form a fuzzy partition of
[a, b] and f be any function from C([a, b]). We say that the n-tuple of real
numbers F[f ] = (F1, . . . , Fn) given by

Fk =

∫ b

a
f(x)Ak(x)dx
∫ b

a
Ak(x)dx

, k = 1, . . . , n, (3)

is the integral F-transform of f with respect to A1, . . . , An.
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The discrete form of the F-transform is applied to functions f that are
defined on a finite set P = {p1, . . . , pl} ⊆ [a, b]. We assume that the set P is
sufficiently dense with respect to the fixed partition, i.e.,

(∀k)(∃j)Ak(pj) > 0.

Then, the discrete F-transform F[f ] = (F1, . . . , Fn) of f is defined as follows:

Fk =

∑l
j=1 f(pj)Ak(pj)
∑l

j=1Ak(pj)
, k = 1, . . . , n. (4)

3.3 Inverse F-transform

The inverse F-transform establishes a backward correspondence from the set of
n-dimensional vectors to the set of continuous/discrete functions. This corre-
spondence is not inverse with respect to the direct F-transform, but if both are
applied sequentially then the result approximates the original function.

Definition 3 Let A1, . . . , An be basic functions that form a generalized fuzzy
partition of [a, b] and f be a function from C([a, b]). Let F[f ] = (F1, . . . , Fn) be

the F-transform of f with respect to A1, . . . , An. Then, the function f̂ : [a, b]→
R represented by

f̂(x) =

∑n
k=1 FkAk(x)∑n
k=1Ak(x)

, x ∈ [a, b], (5)

is called the inverse F-transform.

In the discrete case, the inverse F-transform f̂ is defined using the same
expression (5) that is applied to set P where the original discrete function was
defined.

The below given Theorem 4 demonstrates that the inverse F-transform f̂
approximates a continuous function f with arbitrary precision. Thus, it explains
why the F-transform has convincing applications in various fields, including
image processing.

Theorem 4 Let f be a continuous function on [a, b]. Then, for any ε > 0, there
exist hε such that for any hε/2 < h′ ≤ hε and any (hε, h

′)-uniform generalized

fuzzy partition of [a, b], the corresponding inverse F-transform f̂ε of f fulfills

|f(x)− f̂ε(x)| ≤ ε, x ∈ [a, b]. (6)

4 New F-transform Based Image Reduction and
Its Effectiveness

Image compression was the first application of the F-transform to image pro-
cessing. In [4], we proposed to represent a compressed image by a matrix of
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F-transform components computed over a uniform Ruspini partition of the im-
age domain. The reconstruction to a full-size image was done using the inverse
F-transform. This method (we will call it the “ simple F-transform based com-
pression”) does not take advantage of any property of the original image and
therefore, its quality is not very high. In [2], we proposed another compression
methods and proved that a proper choice of a fuzzy partition improves a quality
of the reconstructed image.

In this Section, we introduce a new F-transform based image reduction that
is based on a generalized fuzzy partition. We will see that similar to the case of
compression, a tuning of fuzzy partition leads to better results in reduction. We
will see that the method of F-transform that is based on a specially designed
(generalized) fuzzy partition is the most suitable reduction method from both
quality (measured by MSE or SSIM) and complexity points of view.

4.1 Proposed algorithm and its complexity

Below, we introduce the new F-transform based reduction algorithm. It is ap-
plied to an image function u : [1, N ] × [1,M ] → [0, 255] where the domain
and the range contain only natural numbers. The following expression for the
F-transform components Ukl, k = 1, . . . , n, l = 1, . . . ,m, of u is a direct gener-
alization of (4):

Ukl =

∑N
i=1

∑M
j=1 f(i, j)Ak(i)Bl(j)

∑N
i=1

∑M
j=1Ak(i)Bl(j)

. (7)

In (7), it is assumed that basic functions A1, . . . , An (B1, . . . , Bm) establish a
fuzzy partition of [1, N ] ([1,M ]) and that the set [1, N ] ([1,M ]) is sufficiently
dense with respect to A1, . . . , An (B1, . . . , Bm).

The description of the algorithm is given in terms of procedures, i.e., without
unnecessary technical details.
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Algorithm FT of image reduction on the basis of
the F-transform with generalized fuzzy partition

Inputs: N ×M image u, reduction ratio ρ.
Output: Reduced image ū.

Step 1. Find values n,m ≥ 2 such that NM
nm = ρ. Let

hx = N−1
n−1 , hy = M−1

m−1 .
Step 2. Choose n hx-equidistant nodes x1, . . . , xn ∈
[1, N ] and m hy-equidistant nodes y1, . . . , ym ∈
[1,M ].
Step 3. Choose margins h′x and h′y, generating
functions A0x and A0y and establish (hx, h

′
x)- and

(hy, h
′
y)-uniform fuzzy partitions of [1, N ] and [1,M ],

respectively.
Step 4. Compute the F-transform components Ukl,
k = 1, . . . , n, l = 1, . . . ,m, of u on the basis of (7)
and arrange them into matrix F[u]. Take F[u] as the
output reduced image ū.

We claim that the complexity of Algorithm FT is linear with respect to the
length of the input. In order to justify the claim, we estimate the complexity of
the main Step 4. According to (7), a computation of the F-transform component
Ukl can be taken over those pixels (i, j) that are “covered by” the product AkBl,
i.e. fulfill Ak(i)Bl(j) > 0. Due to the uniformity of partition, for all k, l, k =
1, . . . , n, l = 1, . . . ,m, a number of such pixels depends on the initial choice of
margins h′x and h′y and it is a constant characteristic of the partition. Therefore,
there is a constant number, say C, of operations involved into the computation
of each component Ukl. Consequently, the total number of operations required
by the Step 4 is equal to Cnm or to CNM/ρ. Thus, the complexity of the Step
4 is linear with respect to the product NM or with respect to the length of the
input.

4.2 Optimal choice of parameters

In this Section, we analyze parameters of Algorithm FT in order to choose their
optimal values that minimize MSE and maximize SSIM. Let us remark that for
any input image, the output of the algorithm (reduced image comprised by the
F-transform components) is fully determined by the choice of a fuzzy partition.
This means that the parameters of the latter will be analyzed in this Section.

In Tables 2, we show quality measures MSE and SSIM for Algorithm FT
where the reduction ratio ρ = 9 : 1 and the reconstruction is “pixel-to-block”.
Other parameters are as follows: distance between nodes h = 3 and margins
h′ = 2, 3, 4. Let us remark that except for h′ = 3 (Ruspini partition), fuzzy
partitions with h′ = 2, 4 are of the generalized type. The optimal values of
quality measures are highlighted.
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Table 2. MSE and SSIM for Algorithm FT

MSE
Img No. h′ = 2 h′ = 3 h′ = 4
1 241 262 307
2 45 48 56
3 46 49 57
4 164 178 210
5 123 131 154
6 191 205 237
7 77 83 97
8 121 131 158
9 290 307 348
10 414 445 523
11 343 367 414
Mean 186.82 200.55 232.82

SSIM
Img No. h′ = 2 h′ = 3 h′ = 4
1 0.95 0.94 0.93
2 0.98 0.98 0.97
3 0.98 0.98 0.97
4 0.93 0.93 0.91
5 0.98 0.97 0.97
6 0.95 0.95 0.94
7 0.98 0.97 0.97
8 0.98 0.98 0.98
9 0.94 0.93 0.92
10 0.94 0.93 0.92
11 0.88 0.87 0.85
Mean 0.95 0.94 0.93

It is immediate from Table 2, that the uniform (3, 2)-fuzzy partition (where
h = 3 and h′ = 2) is the optimal with respect to the chosen input images and
quality measures MSE and SSIM.

In Figure 2, the two color image, numbered by 5, illustrates reductions pro-
duced by the Algorithm FT where h′ = 2, 3, 4.

Figure 2: Image 5 (left) and its 9 : 1-reductions corresponding to h′ = 2 (top-
right), h′ = 3 (middle-right), h′ = 2 (bottom-right).

It is visible that the sharpest reduction corresponds to the value of margin
h′ = 2.
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4.3 Comparison with interpolation and aggregation based
image reduction algorithms

In this Section, various reduction algorithms are compared on a data set that
contains 53 color images taken from

http://sipi.usc.edu/database/database.php/volume=textures.

The images are of different resolutions: 512×512 px (20 pieces), 256×256 px (8
pieces), 1024×1024 px (24 pieces) and 2250×2250 px (one piece). The reduction
ratio ρ = 9 : 1 and the reconstruction is performed on the basis of the “pixel-
to-block” scheme. For the sake of brevity, we will display standard statistics
of MSE for all five algorithms: interpolation INT (bilinear bl, bicubic bc and
Lanczos Lns), 2AGG and the F-transform FT with the optimal setting values:
h = 3 and h′ = 2.

In Table 5, we see that the F-transform based reduction is slightly better
than Algorithm AGG of image reduction via aggregation and visibly better than
interpolation methods (the best quality measures are printed in bold).

Table 5. MSE for FT, INTbl, INTbc, INTLns, AGG

Stat FT INTbl INTbc INTLns AGG
Min 32.6 43.6 44.7 41.9 32.6
Q1 81.2 113.7 113.8 121.4 82.0
Median 102.1 145.6 150.0 170.8 103.7
Mean 146.5 197.3 199.6 212.0 152.4
Q3 163.0 246.3 242.0 262.6 167.3
Max 517.0 606.0 607.0 626.7 527.3

5 Conclusion

In this contribution, we introduced the F-transform with a generalized fuzzy
partition and proved that the corresponding inverse F-transform works as an
approximator. We showed that reduction of color images which is based on this
type of F-transform has better quality (measured by criteria MSE and SSIM)
than that obtained using the aggregation based image reduction algorithms
from [1]. We estimated the complexity of the F-transform based reduction and
proved that it is linear with respect to the length of the input. We showed
that reduction of color images which is based on this type of F-transform has
better quality (measured by the criterion MSE) than that obtained using the
interpolation and aggregation based image reduction algorithms.
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Abstract

In this paper, we show that fuzzy transform originally introduced for
a transformation of complex spaces of functions to simpler ones can be
used in the analysis of real stationary random processes. We will show
that under certain assumptions the fuzzy transform may be used for an
approximation of this type of stationary processes. The obtained results
could help researches to understand better the analysis of time series based
on fuzzy transform.

1 Introduction

In time series analysis, random noise component is assumed in many cases to be
a stationary process for its valuable properties. Fuzzy transform (F-transform
for short) is a technique based on a partitioning of a real interval using fuzzy
sets that generally transforms complex spaces of functions to simpler ones. By
setting of fuzzy partition parameters the F-transform can be used for approx-
imation and smoothing of original functions. The latter has been used among
others in time series analysis for a trend extraction and a reduction of seasonal
components (see [1], [2]).

In this paper, we focus on the random noise component of time series de-
scribed by a weakly stationary process (with zero mean value). We will show
that under specific assumptions the F-transform can be used for an approxima-
tion of this type of stationary process.

The result is motivated by the idea to represent complex stationary processes
using processes with a discrete spectrum. It can be shown (see, e.g., [3]) that
each stationary process ξ(t) defined on a wide interval [−T, T ] (it means for
a large T ) can be approximated arbitrarily closely by a linear combination of
harmonic oscillations of the form

∑n
j=1 ξje

iλjt, where ξ1, . . . , ξn are pairwise
uncorrelated random variables with mean zero independent on time t, i is the
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imaginary unit and λ1, . . . , λn are real constant. The representation of real
stationary processes by F-transform, however, keeps a different idea than the
previous one. The linear combination of harmonic oscillations is here replaced
by the combination of basic functions which uniformly partition the real line and
the closeness of frequencies λj by closeness of nodes over which fuzzy partitions
are built.

The presented results have to be considered as preliminary ones justifying
the investigation of stationary processes using F-transform. Another argument
supporting the investigation of F-transform in the area of stationary processes
comes from the computation complexity O(n) of F-transform in contrast to the
computational complexity O(n log n) that holds for the fast Fourier transform.

The paper is structured as follows. A necessary background for the analysis
of stationary processes is provided in next section. The third section is devoted
to the basic F-transform concepts translated into the language of stochastic
processes. The main results are presented in the fourth section. The last section
is a conclusion.

2 Stationary processes

In this section, we provide a necessary background for our analysis of weakly
stationary process ξ(t) by fuzzy transform.

2.1 Assumptions

In what follows, we assume that a probability space (Ω,F , P ) is fixed and we
consider a real random process ξ(t) (defined for any real number t) such that for
any finite sequence t1, . . . , tn (n = 1, 2, . . . ) of times there is a joint distribution
function given by

Ft1,...,tn(x1, . . . , xn) = P ({ξ(t1) ≤ x1, . . . , ξ(tn) ≤ xn}). (1)

The distribution functions (1) must satisfy the following two conditions:

(D1) The symmetry condition, according to which

Fti1 ,...,tin (xi1 , . . . , xin) = Ft1,...,tn(x1, . . . , xn),

where i1, . . . , in is a permutation of the indices 1, . . . , n;

(D2) The compatibility condition, according to which

Ft1,...,tm,tm+1,...,tn(x1, . . . , xm,∞, . . . ,∞) =

Ft1,...,tm(x1, . . . , xm)

for any tm+1, . . . , tn if m < n.
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We use E, Var, Cov to denote the expected value, variance and covariance
of random variables, respectively. Further, let us define a real function B(t, s)
called covariance function of ξ(t) (see [4] ) by

B(t, s) = E[ξ(t)ξ(s)]. (2)

We assume that ξ(t) satisfies the following conditions for any t:

(i) E[ξ(t)] = 0;

(ii) B(t, t+ τ) is independent of t for each τ ;

(iii) B(τ) = B(0, τ) is Lebesgue integrable.

The first two conditions says that ξ(t) is a (weakly) stationary process, the latter
is a necessary condition for our analysis. Obviously, the covariance of random
variables ξ(t) and xi(s) is equal to B(t− s), i.e.,

Cov(ξ(t), ξ(s)) = B(t− s). (3)

Specifically, we have Var(ξ(t)) = B(0) = σ2. Then |B(τ)| ≤ B(0) = σ2 for any
t, s.1

Note that the previous inequality says that the random variables ξ(t) and
ξ(s) are dependent to each other in a degree which absolute value is at most
equal to the variance of ξ(t). Sometimes, it seems to be natural to assume that
higher difference between t and s causes lower dependence. The assumption on
integrability of B(τ) is a necessary condition for our analysis of approximation
and variability reduction of ξ(t) using the fuzzy transform.

2.2 Limit of sequences of random variables

Let ξ1, ξ2, . . . be a sequence of random variables. We say that a random variable
ξ is a limit in the mean square of the sequence of random variables ξ1, ξ2, . . .
and denote it by

l. i.m
n→∞

ξn = ξ (4)

if

lim
n→∞

E[(ξn − ξ)2] = 0,

i.e., for any ε > 0 there exists a natural number n0 such that E[(ξn − ξ)2] < ε
for any n > n0.2 Let us show two important properties of limit in the mean
square which will be used later (see [5]).

Theorem 1 Let (ξn)∞n=1, (ψn)∞n=1 be two sequences of random variables and let
us suppose that l. i.m n→∞ ξn = ξ and l. i.m n→∞ ψn = ψ. Then,

(i) E[ξ] = limn→∞E[ξn],

(ii) E[ξψ] = limn→∞E[ξnψn].

1It follows from the Cauchy-Schwartz’s inequality.
2Note that we use the symbol l. i.m to distinguish the limit in the mean square of a

sequence of random variables and the common limit of a sequence of numbers (cf., [5]).
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2.3 Integral of stationary process

Let f(t) be an arbitrary real function and ξ(t) a stationary random process.
The integral

∫ d

c

ξ(t)f(t)dt (5)

is defined as the limit (in the mean square) of random variables

n∑

j=2

ξ(t′j)f(t′j)(tj − tj−1),

where c = t1 < t2 < · · · < tn = d and tj−1 ≤ t′j ≤ tj holds for any j = 2, . . . , n.
Of course, this integral does not exist for all pairs of real functions and stationary
processes. For details, we refer to [3]. In what follows, we will assume only such
real functions and stationary processes that are integrable with respect to the
integral (5).

In order to show the approximation of stationary processes using the F-
transform, we will need the following special case of Hölder’s inequality for
integrals which holds in the mean.

Theorem 2 Let ξ(t) be a stationary process and f(t) be a real function defined
on [c, d]. Then,

E



(∫ d

c

|ξ(t)f(t)|dt
)2

 ≤ E

[∫ d

c

|ξ(t)|2dt
∫ d

c

|f(t)|2dt
]

(6)

3 F-transform of stationary process

In this section, we will briefly review the main principles of the fuzzy transform.
Detailed explanation of the general theory can be found in [6, 7, 8].

Let U be an arbitrary (nonempty) set called a universe. By a fuzzy set in
the universe U we will understand a function A : U → [0, 1]. The F-transform is
a special technique that can be applied to real continuous functions f , defined
on an interval [a, b] ⊂ R. The essential idea is to transfer f into another,
simpler space, and then to transfer the respective image back. The latter space
consists of finite vectors that are obtained on the basis of the well formed fuzzy
partitions of the domain of the given function. Thus, the first step called direct
F-transform results in the vector of averaged functional values. The second step
called inverse F-transform converts this vector into another continuous function
f̂ , which approximately reconstructs the original f .

3.1 Uniform fuzzy partition

Let Z denote the set of integers. It is well-known that a uniform fuzzy partition
is defined using a generating function K which is modified by a parameter
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h expressing the required spread. Each basic function of the uniform fuzzy
partition is then constructed using a suitable shift of the modified generating
function K, where the uniformity for all shifts is supposed. The generating
function is defined as follows.

Definition 1 A function K : R → [0, 1] is said to be a generating function if
K is an even Lebesgue integrable function (fuzzy set) which is non-increasing in
[0,∞) and

K(x)

{
> 0, if x ∈ (−1, 1);

= 0, otherwise.
(7)

A generating function K is said to be normal if K(0) = 1.

It should be noted that the previous definition is more general than the
analogous definition of a generating function in [9], because the continuity of
K is replaced by its integrability and the normality of K is considered as an
additional condition.3 Uniform fuzzy partitions of the real line are defined as
follows (cf., [11]).

Definition 2 Let K be a normal generating function, h be a positive real num-
ber and c0 ∈ R. A system of fuzzy sets defined by

Ak(x) = K

(
x− c0
h
− k
)

(8)

for any k ∈ Z is said to be a uniform fuzzy partition (UFP) of the real line
determined by the triplet (K,h, c0) if the Ruspini’s condition is satisfied, i.e.,

S(x) =
∑

k∈Z
Ak(x) = 1 (9)

holds for any x ∈ R.

In the sequel, the parameters h and c0 are called a spread and a central node,
respectively. The fuzzy sets Ak defined by (8) that form a uniform fuzzy par-
tition of the real line are called basic functions. A simple consequence of (8) is
the formula Ak(x) = A0(x − hk) that holds for any x ∈ R and k ∈ Z. Putting
ck = c0 + kh one can simply check that Ak(ck) = 1 and Ak is centered around
the node ck.

3.2 Direct and inverse F-transform

We use Ah = (Ak)k∈Z to denote a uniform fuzzy partition of real line determined
by (K,h, x0) and denote (ck)k∈Z their corresponding nodes, i.e., Ak(x) = A0(x−
ck) = K(x−ckh ).

3In [10], a generating function was called a basal function.
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Definition 3 Let ξ(t) be a stationary process, Ah be a uniform fuzzy partition
and (ck)k∈Z denote the respective nodes. An infinite vector of random variables
(ξk)k∈Z is called a direct fuzzy transform (F-transform) of ξ(t) with respect to
Ah if

ξk =
1

h

∫ ck+1

ck−1

ξ(t)Ak(t)dt, k ∈ Z.

The random variable ξk is called a component of F-transform.

It is easy to show that the linearity of F-transform is preserved for stationary
processes, i.e., if ξ(t) = aη(t) + bζ(t), a, b ∈ R, then ξk = aηk + bζk. Note that
the linearity belongs among the most valuable properties of the F-transform
often used in proofs. In this paper, we use ξk,h to denote the k-th F-transform
component at the node ck with respect to Ah and suppose only such stationary
processes ξ(t) for which ξk,h can be found for any k ∈ Z and h > 0.

The inverse F -transform is defined as the linear combination of components
and basic functions. We use a slight modification of the original definition in
[9] as follows.

Definition 4 Let ξ(t) be a stationary process and (ξk)k∈Z be the direct F -
transform of ξ(t) with respect to Ah. Then,

ξ̂(t) =
∑

k∈Z
ξkAk(t) (10)

is called an inverse F -transform of ξ(t) with respect to Ah.

4 Approximation of ξ(t) by F-transform

In order to investigate the approximation of stationary processes ξ(t) by the
F-transform, let B∗(τ) = B(0)−B(τ) and suppose that

lim
h→0

1

h

∫ h

0

B∗(τ)dτ = 0. (11)

It is easy to see that the function B∗(τ) is a non-negative real function and
the assumption (11) on ξ(t) says that random variables ξ(t) and ξ(s) are very
strongly dependent for small differences between t and s, in other words, B(τ)
converges to B(0) for τ → 0.4

In what follows, we provide several theorems demonstrating how the F-
transform can approximate stationary process satisfying (11). In the original
paper ([6]) on the F-transform, the author shows that a twice continuously dif-
ferentiable function differs from the F-transform components at nodes ck up

4The latter follows from the integral mean value theorem saying that, for each h > 0, there

is τ ′ ∈ (0, h) such that 1/h
∫ h
0 B∗(τ)dτ = B∗(τ ′), i.e., B∗(τ) converges to 0.
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to h2. As a consequence we obtain that the F-transform components converge
to the values of original function at nodes ck for h → 0. The following the-
orem shows an analogous property for stationary stochastic process under the
assumption (11).

Theorem 3 Let ξ(t) satisfy (11) and ck be a fixed node. Then, there ex-
ists a sequence of F-transform components ξk,h1

, ξk,h2
, . . . at the node ck w.r.t.

Ah1 ,Ah2 , . . . , respectively, such that l. i.m n→∞ ξk,hn = ξ(ck).

The following two theorems show that each stationary process ξ(t) can be ap-
proximate arbitrarily closely by the F-transformed components belonging to the
nearest neighborhood of t (i.e., [t− h, t+ h]).

Theorem 4 Let ξ(t) satisfy (11) and (Ahn
)∞n=1 be a sequence of UFPs such

that limn→∞ hn = 0. Then, for any ε > 0, there exists n0 ∈ N such that for
any n > n0 it holds E[(ξ(t)− ξk,hn)2] < ε for any F-transform component ξk,hn

w.r.t. Ahn and t ∈ R such that |ck − t| ≤ hn.

Theorem 5 Let ξ(t) satisfy (11) and (Ahn
)∞n=1 be a sequence of UFPs such

that limn→∞ hn = 0. Then, for any ε > 0, there exists n0 ∈ N such that for
any n > n0 it hods E[(ξ(t) − ξk,hn)(ξ(t) − ξk+1,hn)] < ε for any F-transform
components εk,hn and εk+1,hn w.r.t. Ahn and t ∈ R such that |ck − t0| ≤ hn
and |ck+1 − t0| ≤ hn.

The last theorem is a version of Theorem 2 in [6] for stationary processes.

Theorem 6 Let ξ(t) satisfy (11) and (Ahn
)∞n=1 be a sequence of UFPs such

that limn→∞ hn = 0. Then, the corresponding sequence of inverse F-transforms
ξ̂h1(t), ξ̂h2(t), . . . converges in the mean square to ξ(t), i.e., l. i.m n→∞ ξ̂hn(t) =
ξ(t) for any t ∈ R.

5 Conclusion

In this paper, we analyzed the (weakly) stationary processes. We showed that
under certain assumptions the fuzzy transform can be used for an approximation
of this type of stationary process. Although, our results are only preliminary
ones and they are far from the known results on the discrete representation of
stochastic processes (see, e.g., [12]), we believe that they support and give us
rational arguments to continue in the investigation of stationary processes in
the context of the F-transform.
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Abstract

In this paper the design of the environment detection method is pre-
sented. By environment we mean surroundings in which autonomous
robot operates, especially the UAV. This method is suitable for the ap-
plication in UAV systems for the horizon detection, but also in the other
artificial intelligences applications, which require recognition of the en-
vironments character in which autonomous entity operates. Part of the
document includes also an overview of methods used for the horizon de-
tection and problems which may arise during the detection. Environment
detection algorithm is based on the principles of fuzzy sets and Sugeno
- type fuzzy inference systems. The detected straight line segments are
the basic input algorithm, segment detection method is subject of the
further development. Environment detection method is computationally
undiscerning and therefore suitable for implementation on programmable
microcontrollers, which are often used to control the UAV devices. En-
vironment detection and horizon recognition will be used to deal with
position sensors failures and replace their functionality in image recogni-
tion with previously proposed algorithms in UAV control method using
the principles of multi-agent systems.

1 UAV multiagent – based control system

In Figure 1, we can see the proposal of UAVcontrol system, based on multiagent
principles [3]. The main reason for choosing this approach is the fact that
during the decomposition of the function of the UAV system, specific modules
are proposed and each module is responsible for the implementation of certain
features of the UAV system. These modules have to work, if it is possible,
as separate, autonomous entities. It is obvious, that individual modules must
cooperate, so that the whole system is working. If we are aware of the principles
of multi-agent systems, we find that the above modules meet the criteria of
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Figure 1: Multiagent - based UAV control system [3].

agents in the multi-agent community.

Some modules of the proposed system have high demands on the reaction
rate (in particular parts of the system, ensuring obstacle avoidance), while other
modules (such as planning and decision making) require the ability to handle
complex tasks at the expense of reaction response. If we refer again to the
theory of agent and multi-agent systems, we find that the criterion of a high
response time meet the so-called reactive agents. On the contrary, thinking skills
meet the criterion of deliberative agents. Other modules can be created using a
combination of both approaches. The cooperation of the modules must benefit
from mutual interaction, which is another problem that can be solved using the
principles of multi-agent communication, cooperation and coordination.

The basic idea of the proposed UAV system is to switch three basic modes of
flight. We define a higher control mode as flight control using AI algorithms and
low control mode based on simpler, reactive algorithms. Switching is carried
out by the module named ”error detection”. Flight modes are:

- Autonomous (AI) control flight mode

- 3D Breitenberg flight mode

- Emergency flight mode
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“Emergency” module and flight mode is activated on a signal from the mod-
ule ”fail detection” and where there is a shortage of modules through which
you can no longer continue in flight. Module ” Emergency flight” is mostly a
reactive character of the agent. The main priorities and objectives of vehicle
behavior is to reduce the speed and direction of the device falling out of the
area, where it could result in damage to property or threat to humans.

To fulfill this task with the help of image recognition, we need a fixed point
in a scene. As a suitable candidate for such point can be a horizon.

2 Horizon detection

The horizon recognition is most widely solved problem related to the develop-
ment of the autonomous control of UAVs. Correctly recognized horizon and its
angle enable you to obtain additional information that may be important for
the controls, such as an estimate of altitude, speed, and so on. The horizon is
also often the only permanent landmark in the scene, so it can be used for UAV
stabilization.

There are a number of horizons detection solutions with different percentage
success of the detection. For small UAVs, which reach maximum heights of
hundreds of meters, the horizon detection is not a trivial task though. At this
point it is necessary to define the difference between the horizon and the visible
horizon. We consider as the horizon the dividing line between sky and earth,
that is, a horizontal line that is level to the ground. We understand the visible
horizon as the real dividing line between sky and earth, which is visible from
a given location in the scene. Visible horizon may therefore not always be
horizontal with the ground plane. Another problem arises naturally in urban
areas, where horizon must be detected for example from vanishing points of
detected building outlines.

The ideal objective is to find a universal approach how to detect the actual
position of the horizon and any environment. Such procedure would not fail in
any area, which the UAV can get in.

2.1 Usual problems with the horizon detection algorithms

Currently, there are some general aproaches for horizon detection. Each of
them is able to detect the horizon under certain conditions from the detection
of horizon using Hough transformation to more complex methods. There is an
overview of some of the techniques and problems depending on the conditions
In Table 1. Intentionally I dont mention the detection horizon in urban areas
here, because in such conditions all listed procedures fail virtually. (The Table
1.)

To detect horizon in urban areas there are several methods that are based
on the monitoring of main lines in the image and the detection of the vanishing
points, from which the likely position of horizon and its angle can be calculated.
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The method The best results The possible weaknesses
Hough transfor-
mation + edge
detectors.

Great heights,
straight horizon.

Fails at low altitudes and
indented areas.

Searching of the cen-
ters of gravity of the
ground and sky.

Equally contoured
horizon

In the indented sur-
roundings and a higher
cloudiness.

Optical flow. Great heights, a little
contoured horizon.

May fail at low altitudes
and indented surround-
ings.

Table 1: Problems of standard horizon detectors depending on conditions

1: for ever do
2: if (detectedenviromentconstant) > urban then
3: return horizon detection algorithm for urban enviroment
4: else
5: return horizon detection algorithm for open enviroment
6: end if
7: end for

Figure 2: Environment detection pseudocode

Algorithms that work with edges however fail in open landscape, because
there is no correct detection of horizontal lines and the subsequent derivation
of the vanishing points because they are virtually absent in the scene.

3 The detection of the environment

For the problems described in the previous chapters a simple solution can be
used, based on the idea of detecting the environment, in which the UAV device
is moving, and the subsequent correct choice of the algorithm for detecting the
horizon. At this point, it is irrelevant what kind of algorithms for horizon recog-
nition we will use; the important thing is to choose at least one for landscape
without build-up area and one for urban areas. The pseudo-code on Figure 2.
represents the basic algorithm for environment detection:

Detected environment constant is a number which expresses the probability
that it is the urban environment.

However, the choice of correct algorithm which correctly calculates the de-
gree of probability based on the detected parameters, which will lead to the
correct environment identification, remains the problem. Another problem is,
of course, selecting the right input parameters.
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Figure 3: Minimum leght of straight lines.

3.1 The choice of detection parameters

The information listed in the text above implies that one of the key parame-
ter for the decision-making algorithm will be straight lines detection and their
characteristics. Quantity of detected straight lines with specific lengths is quite
different in open scenery and urban development. However, this may not al-
ways be decisive. The straight lines, which can provide false information, such
as location of the vanishing point (power lines, fences, roads), can be detected
even in open landscape. Therefore, it is necessary to provide additional input
parameters. We must include only the lines that have a certain length to the
calculations, though. It is necessary to exclude short lines, which may occur
in both types of environments. We can select minimum length of straight lines
using for example the size of the processed (see Fig. 3), Clong is a constant,
which defines the minimum size of the detected lines. It is appropriate to use
the direction of detected lines to calculate the next parameter. It is specifically
the number of lines that have the same direction as this attribute corresponds
to a high degree of urban environment. It is appropriate to use the number
of detected rectangles is the last parameter. It is essential to use an algorithm
that is able to detect rectangles with perspective. Representation of rectangles
in the images from urban enviroment is usually high. Because we detect the
straight lines and their directions, there is no problem to find the lines that form
the edges of detected rectangles. For detection of environment it is necessary to
count with the fact that quadrangles are also detected outside urban areas, but
their number will be low. Therefore we have three input parameters:

• Number of line segments

• Number of parallel line clusters

• Number of detected rectangles

Output parameters for decision making are two:

• Probability of urban environment

• Probability of non urban environment

3.2 The proposed method

On Figure 4. the proposed method scheme can be seen. The choice of the
decision-making algorithm is the last step needed for the realization of environ-
ment detection. Since this is a relatively small number of input parameters,
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Figure 4: Scheme of proposed system.

it seems appropriate to use the principles of Fuzzy inference systems. Fuzzy
inference is the process of formulating the mapping from a given input to an
output using fuzzy logic. The mapping then provides a basis from which de-
cisions can be made, or patterns discerned. Because this is a UAV and there
is a presumption of embeded hardware that has limited computing power, we
suggest using Sugeno model [4].

A typical rule in a Sugeno fuzzy model has the form [2]:
IF Input 1 = x AND Input 2 = y, THEN Output is z = ax + by + ci

For a zero-order Sugeno model, the output level z is a constant (a=b =0). The
output level zi of each rule is weighted by the firing strength wi of the rule. For
example, for an AND rule with Input 1 = x and Input 2 = y,
the firing strength is:
wi = AndMethod (F1(x), F2(y))
where F1,2 (.) are the membership functions for Inputs 1 and 2. The final
output of the system can be the weighted average of all rule outputs More
about the Sugeno Fuzzy inference systems can be found in [3] or [4]. Let us
denote the input and output parameters as:

• SEG number of line segments

• CL number of parallel lines clusters

• RC number of detected rectangles

• URB probability of urban environment

• NURB probability of non urban environment

URB and NURB variables are used for final decision proces. Probability in
this case does not mean mathematical probability. In some cases, both can be at
the same level. Inference system works in the basic version with 4 fundamental
rules:

• IF SEG = HIGH AND CL = HIGH AND RC = HIGH
THEN URB = SEG + CL + RC
This rule corresponds to a situation where there are entire buildings, in-
cluding the windows, etc. represented in the scene.

• IF SEG = HIGH AND CL = HIGH AND RC = LOW
THEN URB = RC This rule corresponds to a situation with lots of lines,
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Figure 5: Input and output FUZZY variables.

Rectangles Lines Segments Urban
environment

HIGH HIGH HIGH HIGH
LOW HIGH HIGH LOW
LOW HIGH LOW LOW
LOW LOW LOW LOW

Table 2: Environment detection rules behavior

but lack of geometric entities so there is a low probability of urban envi-
ronment.

• IF SEG = LOW AND CL = HIGH AND RC = HIGH
THEN URB = SEG This rule corresponds to the situation of detection
of ornaments or decoration. Can be in a case when building is too close
to UAV. In this scenario, usage of urban scene horizon detection is not
recommended.

• IF SEG = LOW AND CL = LOW AND RC = LOW
THEN URB = RC This rule corresponds to a situation or environmet
without detected rectangles, or line clusters, which means very low prob-
ability of urban surroundings.

Other rules are not fundamentally necessary, only the detection of the urban
environment is required for the needs of the decision-making process.

4 Conclusion and future work

The ability to detect the character of the environment in which autonomous
entity operates should be an important feature for future autonomous systems,
especially for UAVs. The use of fuzzy inference system for such detection is
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probably an appropriate approach as it corresponds to the character of the
input parameters that have a high degree of uncertainty. The method proposed
in this paper will be implemented within the UAV system, which is based on
the principles of multi-agent systems. The ARM architecture was chosen as
the target hardware. Programming language for FUZZY inference system will
be an offshoot of the LISP programming language designed for ARM hardware
(armpit SCHEME). Further work on the project includes testing the accuracy
of detection using existing algorithms to detect the horizon and design custom
algorithms for both urban zone and the open landscape.
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Abstract

East Asia Low Carbon Growth Partnership is a concept advocated
by Japanese Prime Minister Noda as a measure against global warming,
which is an idea is to build supplier-client relationships for sharing both
advanced low-carbon technologies and the benefit of greenhouse gas emis-
sion reduction between countries. We first introduce our game theoretical
framework, and show existence results of its stable solutions.

1 Introduction

Low-carbon growth partnership, LCG-partnership in short, is a concept advo-
cated in 2011 by Japanese Prime Minister Noda as a measure against global
warming which is one of the most serious environmental problem. The idea is to
build a supplier-client relationship of sharing advanced low-carbon technologies
between countries, and the incentive for both suppliers and clients are provided
by sharing the benefit of reduction of greenhouse gas emission by introducing
the technologies.

The global objective is to maximize the total reduction of greenhouse gas
emission among all possible LCG-partnerships, and the problem for finding such
an optimal LCG-partnership is shown to be NP-hard in the strong sense [4].
Obviously, countries make their decision based on their incentives, i.e., the ben-
efit of reduction of greenhouse gas emission by introducing advanced low-carbon
technologies. Hence, it is natural to handle LCG-partnership with game theo-
retical frameworks. As the first attempt [4], a game model based on network
formation game [5] is introduced, and for such a model, some rules are imposed
for avoiding unnecessary conflict between countries. Such a model is a kind of
cooperative games, and it can be considered as a restricted version of hedonic
games [1] as well. Later, in order to increase the reduction of greenhouse gas
emission, the model is extended in [2] by introducing a requirement, based on
the concept of market price, for forming a new link and deleting a existing link
in an LCG-partnership and some numerical results are provided as well.
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In this paper, we provide a formulation of LCG-partnership formation based
on investment functions as its outcomes, each of which describes the amount
of investment between each pair of countries, and we consider LCG-partnership
formation in non-atomic case and atomic case. In addition, we introduce the
concept of separateness, which requires each country to be either client, supplier,
or not involved. Moreover, we define utilities of countries based on investment
functions, and introduce stability concepts based on positional difference of
suppliers and clients. We show the complexity results for finding an investment
function which maximizes the total reduction of greenhouse gas emission, and
show the existence results of stable investment functions.

2 Preliminaries

Let us introduce instances of LCG-partnership formation. Let N = {1, 2, . . . , n}
be a finite set of its countries. For each country i ∈ N ,

• its greenhouse gas emission ggei,

• its GDP1 at purchasing power parity (PPP) 2 exchange rates pppi,

• its industrial scale scli,

• its capacity capi,

• its payback rate αi ∈ (0, 1) for its support

are provided, where capacity capi is the amount of resource (in the unit of indus-
trial scale) prepared for supporting other countries. In our numerical analysis,
the values of ggeis and pppis are provided by [6, 7].

Moreover, we denote the economic efficiency of greenhouse gas emission (i.e.,
GDP PPP per a unit of greenhouse gas emission) of country i by effi, i.e.,

effi =
pppi
ggei

for each i ∈ N .

Outcomes of LCG-partnership formation are defined as follows. Let ϕ be a
non-negative function over N2, where ϕ(i, j) denotes the amount of investment
by country i for supporting country j. In other words, ϕ determines the amounts
of investments all pairs of countries.

Definition 1 A function ϕ : N2 → R≥0 is an investment function if the fol-
lowing constraints are satisfied.

• for each i, j ∈ N , ϕ(i, j) = 0 if effi ≤ effj,

1Gross Domestic Products (GDP) is a value which strongly reflects the development power
of a country, and its the market value of all goods and services produced in a country within
a given period.

2Purchasing Power Parity (PPP) is a technique to provide relative values of different
currencies, and the relative values are calculated based on the amount of a certain item each
currency can purchase.
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• ∑j∈N ϕ(i, j) ≤ capi for each i ∈ N , and

• ∑i∈N ϕ(i, j) ≤ sclj for each j ∈ N .

In general, each country is allowed to have more than one supplier. When
a country is supported by more than one country, more negotiations between
countries are required to determine the investment ratio, which may slow down
the progress of LCG-partnership formation. In order to reduce the number of
negotiations between countries, we introduce the concept of atomicity.

Definition 2 An investment function ϕ is called atomic if ϕ(i, j) ∈ {0, sclj}
for each i, j ∈ N . We say that an LCG-partnership formation is atomic if all of
its non-atomic outcomes (i.e., non-atomic investment functions) are considered
to be infeasible.

When an atomic LCG-partnership formation is under consideration, the de-
scription of its outcomes can be simplified, namely, each investment function
can be characterized by a binary relation. In order to distinguish atomic LCG-
partnership formation with other LCG-partnership formation, we say that an
LCG-partnership formation is non-atomic if atomicity is not imposed. Observe
that a non-atomic LCG-partnership formation may have atomic outcomes.

For each i ∈ N , we define Si(ϕ) and Ci(ϕ) as follows.

Si(ϕ) = {j ∈ N | ϕ(j, i) > 0},
Ci(ϕ) = {j ∈ N | ϕ(i, j) > 0}.

Here, Si(ϕ) is the set of all suppliers of country i under ϕ, and similarly
Ci(ϕ) is the set of all clients of country i under ϕ. By definition, we have∑

j∈Si(ϕ) ϕ(j, i) =
∑

j∈N ϕ(j, i) and
∑

j∈Ci(ϕ) ϕ(i, j) =
∑

j∈N ϕ(i, j).

In our models, players’ utilities are defined as follows. For each pair (i, j) ∈
N2, let rdt(i,j)(ϕ) be the reduction of greenhouse gas emission obtained by
implementing advanced low-carbon technology of country i into country j (with
investment ϕ(i, j)) under ϕ.

rdt(i,j)(ϕ) =
ϕ(i, j)

sclj

(
pppj
effj

− pppj
effi

)

In other words, when country j is fully supported by country i with advanced
low-carbon technologies and PPP of country j is kept unchanged,

• the investment ϕ(i, j) of country i to country j is sclj ,

• economic efficiency of country j is improved from effj to effi, and

• the greenhouse gas emission improved from ggei = pppj/effj to pppj/effi,
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and hence the reduction of greenhouse gas emission is pppj/effj − pppj/effi.
Moreover, when country j is partially supported by country i (i.e., ϕ(i, j) <
sclj), the reduction of greenhouse gas emission becomes ϕ(i, j)/sclj times of
that with full support.

Utilities of countries are defined as follows.

ui(ϕ) = αi

∑

j∈Ci(ϕ)

rdt(i,j)(ϕ) +
∑

j∈Si(ϕ)

(1− αj)rdt(j,i)(ϕ)

Here,

• the first term αi

∑
j∈Ci(ϕ) rdt(i,j)(ϕ) is total payback reduction of green-

house gas emission from country i’s clients, and

• the second term
∑

j∈Si(ϕ)(1−αj)rdt(j,i)(ϕ) is the remaining reduction of
country i’s own greenhouse gas emission after paying back to its suppliers.

Now let us introduce the concept of stability.

Definition 3 Let ϕ and ϕ′ be investment functions. We say that ϕ is dominated
by ϕ′ if any one of the following conditions holds.

Client Switch: There exists a pair (i, j) ∈ N2 such that

• ui(ϕ′) > ui(ϕ),

• ϕ′(i, j) > ϕ(i, j),

• ϕ′(i, `) ≤ ϕ(i, `) for each ` ∈ N \ {j},
• ϕ′(k, `) = ϕ(k, `) for each (k, `) ∈ N2 with k 6= i,

Supplier Switch: There exists a pair (i, j) ∈ N2 such that

• uj(ϕ′) > uj(ϕ),

• ϕ′(i, j) > ϕ(i, j),

• ϕ′(k, j) ≤ ϕ(k, j) for each k ∈ N \ {i},
• ϕ′(k, `) = ϕ(k, `) for each (k, `) ∈ N2 with ` 6= j,

We say that an investment function ϕ is stable if it cannot be dominated by any
investment function.

3 Optimal Outcomes and Stable Outcomes

Let ϕ be an investment function. By rdt(ϕ) we denote the total reduction of
greenhouse gas emission under ϕ, i.e.,

rdt(ϕ) =
∑

(i,j)∈N
rdt(i,j)(ϕ).
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We say that an investment function ϕ is optimal if it maximizes the total re-
duction of greenhouse gas emission among all feasible investment functions, i.e.,
rdt(ϕ) ≥ rdt(ϕ′) for each feasible investment function ϕ′. Observe that all
atomic investment functions are feasible outcomes of non-atomic LCG part-
nership formation. Hence, stable outcomes of non-atomic LCG partnership
formation may have larger greenhouse gas emission than that of atomic LCG
partnership.

Lemma 1 An optimal investment function always exists

For non-atomic LCG-partnership formation, finding an optimal investment
function is a linear programming problem, which can be formulated as follows.

Maximize
∑

i,j∈N
ϕ(i, j)× 1

sclj

(
pppj
effj

− pppj
effi

)

Subject to
∑

j∈N
ϕ(i, j) ≤ capi for each i ∈ N ,

∑

i∈N
ϕ(i, j) ≤ sclj for each j ∈ N .

ϕ(i, j) = 0 for each i, j ∈ N s.t. effi ≤ effj ,
ϕ(i, j) ≥ 0 for each i, j ∈ N .

Observe that the value 1
sclj

(
pppj

effj
− pppj

effi

)
is determined by input data. Ob-

viously, the total reduction of greenhouse gas emission is bounded from above,
and thus, an optimal solution exists. Moreover, this problem can be formulated
as a minimum cost flow problem, which can be solved in polynomial time.

For atomic LCG-partnership, finding an optimal investment function is a
combinatorial optimization problem with a finite number of solutions, and ob-
viously an optimal solution exists. This problem is NP-hard in the strong sense
shown by a polynomial time reduction from bin-packing problem, where each
bin is associated to a supplier country (a country with high economic efficiency),
and each item is associated to a client country (a country with low economic
efficiency).

Lemma 2 An optimal investment function is stable when all αis have the same
value.

Proof. Let ϕ and ϕ′ be investment functions. Suppose ϕ is dominated by ϕ′

with client switch via pair (i, j). By definition,

ui(ϕ) = αi

∑

`∈Ci(ϕ)

rdtϕ(i, `) +
∑

k∈Si(ϕ)

(1− αk)rdtϕ(k, i),

and from ϕ′(k, `) = ϕ(k, `) for each (k, `) ∈ N2 with k 6= i,

ui(ϕ
′) = αi

∑

`∈Ci(ϕ′)

rdtϕ′(i, `) +
∑

k∈Si(ϕ)

(1− αk)rdtϕ(k, i).
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From ui(ϕ
′) > ui(ϕ), we have

∑

`∈Ci(ϕ′)

rdtϕ′(i, `) >
∑

`∈Ci(ϕ)

rdtϕ(i, `)

Moreover, again from ϕ′(k, `) = ϕ(k, `) for each (k, `) ∈ N2 with k 6= i,

∑

`∈Ck(ϕ′)

rdtϕ′(k, `) =
∑

`∈Ck(ϕ)

rdtϕ(k, `).

Hence,

∑

k,`∈N
rdtϕ′(k, `) =

∑

k∈N

∑

`∈Ck(ϕ′)

rdtϕ′(k, `)

=
∑

`∈Ci(ϕ′)

rdtϕ′(i, `) +
∑

k∈N\{i}

∑

`∈Ck(ϕ)

rdtϕ(k, `)

>
∑

k∈N

∑

`∈Ck(ϕ)

rdtϕ(k, `)

=
∑

k,`∈N
rdtϕ(k, `).

Suppose ϕ is dominated by ϕ′ with supplier switch via pair (i, j). From
ϕ′(k, `) = ϕ(k, `) for each (k, `) ∈ N2 with ` 6= j,

uj(ϕ
′) = αj

∑

`∈Cj(ϕ)

rdtϕ(j, `) +
∑

k∈Sj(ϕ′)

(1− αk)rdtϕ′(k, j).

From uj(ϕ
′) > uj(ϕ), we have

∑

k∈Sj(ϕ′)

(1− αk)rdtϕ′(k, j) >
∑

k∈Sj(ϕ)

(1− αk)rdtϕ(k, j),

and since all αks have the same value (less than 1),

∑

k∈Sj(ϕ′)

rdtϕ′(k, j) >
∑

k∈Sj(ϕ)

rdtϕ(k, j).

Moreover, again from ϕ′(k, `) = ϕ(k, `) if ` 6= j,

∑

k∈S`(ϕ′)

rdtϕ′(k, `) =
∑

k∈S`(ϕ)

rdtϕ(k, `).

Hence,

∑

k,`∈N
rdtϕ′(k, `) =

∑

k∈N

∑

k∈S`(ϕ′)

rdtϕ′(k, `)
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=
∑

k∈Sj(ϕ′)

rdtϕ′(k, j) +
∑

`∈N\{j}

∑

k∈S`(ϕ)

rdtϕ(k, `)

>
∑

`∈N

∑

k∈S`(ϕ)

rdtϕ(k, `)

=
∑

k,`∈N
rdtϕ(k, `).

Therefore, every investment function which maximizes the total reduction of
greenhouse gas emission, i.e., an optimal investment function, cannot be domi-
nated, which is a stable investment function.
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Abstract

We describe a our work on exact algorithms for solving a combinatorial
problem called pipelined set cover. The problem is NP-hard and combines
set covering with sequencing. We describe an A∗ search algorithm as well
as an integer linear programming formulation of the problem.

1 Description of the problem

Min-sum set cover is a minimum latency version of the well known set cover
problem: we have a finite set U and a collection of subsets C ⊆ 2U . Our task is
to find a linear ordering Sπ(1), Sπ(2), . . . , Sπ(|C|) of the sets in C minimizing

∑

u∈U
iπ(u)

where iπ(u) = min{i : u ∈ Sπ(i), 1 ≤ i ≤ |C|}. That is, iπ(u) is the index of the
first set Sπ(i) ∈ C containing (“covering”) element u under the ordering π.

The pipelined set cover problem is a generalization of min-sum set cover
where we have

• a “cost” function c : C → R+,

• and a “weight” function w : U → R+. In this paper we do assume (without
loosing generality) w : U → [0, 1], and

∑
u∈U w(u) = 1.

Our task is to find an ordering π of the sets in C minimizing

∑

u∈U
w(u) ·

iπ(u)∑

j=1

c
(
Sπ(j)

)
(1)

Note that when c = 1 and w = 1/|U |, the pipelined set cover coincides with
min-sum set cover.
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Applications and references. The min-sum set cover problem is defined
and analyzed in [Feige et al., 2004]. The pipelined set cover problem is studied
by Munagala et al. [2005] and Kaplan et al. [2005]. Applications mentioned in
the cited papers range from speeding up matrix computations to database query
optimization and machine learning.

As observed in [Ĺın, 2013], an application of the pipelined set cover arises in
the field of decision-theoretic troubleshooting (or sequential fault diagnosis):

• Let U be a set of faults and w(u) be a probability of occurence of fault u.

• Let C be a collection of tests. Each test S ∈ C bears a cost c(S) and can
reliably detect all the faults u ∈ S, it cannot detect any other faults. By
reliable detection is meant that there is zero probability of error.

Then (1) is the expected cost of detecting a fault by a sequence of tests. In
the terminology of troubleshooting [Ottosen, 2012], this diagnostic problem is a
special case of single-fault troubleshooting with dependent actions.

2 Integer linear programming (ILP)

We give an original ILP formulation of the pipelined set-cover problem. For the
ease of presentation, we assume that the elements of U and C are indexed as
u1, . . . , um and S1, . . . , Sn. The corresponding costs and weights are denoted
cj = c(Sj) and wj = w(uj). We assume

⋃
j Sj = U and ∀j Sj 6= ∅.

Our linear model contains two sets of binary variables:

• xij , i = 1, . . . ,m, j = 1, . . . , n.

• δjk, j = 1, . . . , n, k = 1, . . . , n.

Given a strict linear ordering π of the sets in C, we have xij = 1 if element ui
is covered by some set preceeding Sj under π, otherwise xij = 0. Variables δjk
are used to encode the ordering π. We have δjk = 1 if set Sj precedes Sk under
the ordering π, otherwise δjk = 0.

The function (1) can be written as
∑m
i=1 wi ·

∑n
j=1 cj(1 − xij). Minimizing

(1) is therefore equivalent to

max
∑

i,j

wi · cj · xij , (2)

which is the objective function of our linear program. Following are the con-
straints.

For every ui and every pair of distinct sets Sj , Sk covering ui, we require
δjk ⇒ xik:

δjk ≤ xik (3)

We denote J(ui) = {j : Sj 3 ui}. We require xij ⇒
∨
k∈J(ui)\{j} δkj for every

ui and Sj :

xij ≤
∑

k∈J(ui)\{j}
δkj (4)
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Constr. count

(5)
(
n
2

)

(6) n
(7)

(
n
3

)

(3) 2
∑m
i=1

(|J(ui)|
2

)

(4) mn

Table 1: Numbers of constraints

The strict linear ordering π of sets is asymmetric (δjk ⇔ ¬δkj), irreflexive
(δjj = 0) and transitive (δjk ∧ δk` ⇒ δj`). We enforce these properties by the
following (in)equalities:
Asymmetry:

(∀j 6=k) δjk + δkj = 1 (5)

Irreflexivity:

(∀j) δjj = 0 (6)

Transitivity:

δjk + δk` − δj` ≤ 1 for all distinct j, k, ` (7)

For all the variables, we set bounds 0 ≤ xij ≤ 1, 0 ≤ δjk ≤ 1. We require
that all the variables are integral, that is, they either equal 0 or 1. However,
for computatinal reasons it is desirable to declare as few integral variables as
possible. In our model, it is sufficient to explicitely declare as integral only a
subset of the δ-variables:

• When any δjk ∈ {0, 1}, then δkj is “forced” to be integral by constraint
(5). Hence only δjk needs to be explicitely declared as integral.

• All the δjj variables are “forced” to be integral by constraint (6).

• When all the δ’s attain integral values, then so do all the x’s due to
constraints (3) and (4).

The linear model contains mn + n2 variables of which n2−n
2 are integral, and

O(n3 +mn) constraints as indicated in Table 1.

3 A∗ search

Vomlelová and Vomlel [2003] designed an AO∗ algorithm for quite general trou-
bleshooting problem. The algorithm and its guiding heuristic function was later
applied in a less general setting by Ottosen [2012], who analyzed and slightly
modified the heuristic function. We use basically the same algorithm as [Ot-
tosen, 2012], but our formulation and analysis is simpler because we consider a
special case of the troubleshooting problem.
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Heuristic function. Let s = Sπ(1), Sπ(2), . . . be a sequence of some sets from
C and let ∪s ⊆ U be the set of elements of U covered by s. We define three
functions:

g(s) =
∑

u∈∪s
w(u) ·

iπ(u)∑

j=1

c
(
Sπ(j)

)
,

h(s) =
∑

u/∈∪s
w(u) · min

S∈C:u∈S
c(S),

f(s) = g(s) + h(s).

Value g(s) is the weighted cost of covering ∪s, value h(s) is a lower bound
of the weighted cost required to cover U \ ∪s, and value f(s) is a lower bound
of total weighted cost of any sequence starting with s.

Function h is the heuristic we use to guide A∗ search. Ottosen [2012] proved
that it has the desirable property of being admissible and monotonic. Mono-
tonicity means that for any sequence s and any set S /∈ s, we have

h(s) ≤ c(S) + h(s, S).

Monotonicity is easy to verify for our simplified formulation of h:

h(s)− h(s, S) =
∑

u∈S\∪s
w(u) · min

S′3u
c(S′) ≤

∑

u∈S\∪s
w(u) · c(S) ≤ c(S) ·

∑

u∈U
w(u)

︸ ︷︷ ︸
=1

Let h∗(s) be the optimal cost of covering U \ ∪s. Function h is admissible:

(∀s) h(s) ≤ h∗(s) .

Admissibility follows from the monotonicity of h by a simple inductive argument.

Algorithm. The A∗ algorithm generates sequences of sets by successively
appending sets from C in a best-first fashion. The full algorithm listing is shown
at page 5.

The candidate sequences to be expanded are stored in OPEN, a priority queue.
Priority in the queue is given by the function f : operation OPEN.pop() always
returns a sequence s with the minimal value f(s), and removes s from the queue.
We use associative array coalesceMap for pruning. The array is indexed by (a
representation of) subsets of U . When we store a sequence s in coalesceMap,
we store it at index corresponding to ∪s. Obviously. efficient implementation
of data structures OPEN and coalesceMap is important for performance of the
algorithm.

We use a greedy algorithm1 to find an initial feasible solution (line 5 of the
algorithm listing 1). This allows us to prune costly sequences early on. We
prune sequences that cannot be optimal at several places in the algorithm:

1Known as Updating P-over-C in troubleshooting, cf. Ottosen [2012].
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• At lines 8 and 15, we prune any sequence for which the lower bound is
worse than the lowest currently known cost.

• At line 10, we avoid appending an action that covers only a subset of U
of zero weight.

• At line 17, we prune any sequence that is more costly than some other
already constructed sequence covering the same subset of elements.

We refer to [Ottosen, 2012] for further analysis and pointers to literature.

Algorithm 1: A∗ algorithm for the pipelined set cover

input : U , C, w, c
output: An optimal sequence of sets covering U

/* initialization */

1 coalesceMap := {} ; // associative array

2 OPEN := {} ; // priority queue

3 s← ∅; // empty sequence

4 OPEN.push(s);
/* find initial feasible solution */

5 bestSeq ← Greedy(U, C) ;

/* main loop - expand partial sequences */

6 while OPEN 6= ∅ do
7 s← OPEN.pop() ; // s = arg mint∈OPEN f(t)
8 if f(s) ≥ g(bestSeq) then continue;
9 ;

/* try expanding s with unused sets */

10 for A ∈ {S ∈ C : S /∈ s} do
11 if 0 =

∑
u∈A\∪s w(u) then continue;

12 ;
13 s′ ← s‖A ; // append A to s
14 if ∪s′ = U then

/* Is s′ better than the best known solution? */

15 if g(s′)≤ g(bestSeq) then bestSeq ← s′ ;
16 ;

17 else sequence s′ is a partial solution
18 if f(s′) ≥ g(bestSeq) then continue;
19 ;
20 if coalesceMap(∪s′) 6= ∅ then
21 if g(coalesceMap(∪s′)) ≤ g(s′) then continue;
22 ;

/* s′ is a candidate for further expanding */

23 coalesceMap(∪s′) ← s′;
24 OPEN.push(s′);

25 return bestSeq
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Function Greedy(U , C)
input : U , C, w, c
output: A sequence s of sets covering U

1 s← ∅ ; // initialize with empty sequence

2 while U 6= ∅ do
3 A← arg maxS∈C

∑
u∈S∩U

w(u)
c(S) ;

4 s← s‖A; // append A to s
5 C ← C \ {A};
6 U ← U \A;

7 return s

4 Discussion

In the talk, we will discuss some of the computatinal experiences with the above
two algorithms. We have used the GLPSOL/GLPK solver for integer program-
ming. It should be noted that solving the pipelined set cover with a general
purpose ILP solver is at the moment inferior to using the A∗ algorithm. The
author is currently working on a specific branch&bound algorithm that takes
into account the specific form of the pipelined set cover problem.
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Abstract

This paper describes behavioral models in a team of agents. These
models are applied in the simulation of the ingoing crowd to a train. To
find the optimal behavior of agents we use genetic algorithms. Behavior
is encoded by setting of fuzzy rule-base system. The theoretical part
describes genetic algorithms, linguistic modeling and fuzzy sets. In the
practical part we create genetic algorithm in language Scheme and also
we define the inputs and outputs of the fuzzy system. We will design rules
of fuzzy system for speed and linguistic variables for speed and direction.
Then program application to simulate the ingoing crowd to a train.

1 Introduction

This paper presents an experiment for ingoing crowd to a train with using
genetic algorithms, fuzzy rules Takagi-Sugeno (TSK) and Mamdani and their
comparison. This solution has been implemented by using of Fuznet which
solves structural and parametric identification of used fuzzy models. Fuznet has
been implemented in programming language Scheme[1] and subsequently were
developed the application SimDav programmed in C#, inspired by. Firstly were
generated a finite set of individuals which represent a set of fuzzy rules (TSK
and/or Mamdani model). The individual represent evaluation of truth of each
rule.

The first theoretical part introduces theoretical background of used methods
such as genetic algorithms and TSK and Mamdani fuzzy rules. Introduces how
to select an optimal rules to ingoing[5].
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The practical part of this paper discusses reached results from practical
experiments with my developed software using Scheme. In addition has been
developed a GUI application in C# which communicates over UDP with Scheme
libraries[5].

2 Modeling of crowd behavior

Whole system is implemented as a multi-agent system. In this system, an agent
represents a person from the crowd. Each agent is defined by position, direction,
age and state of health. The following figure demonstrates mapping of rules and
behavior patterns which are used in simulation (Fig. 1). The following formulas
describe fuzzy modeling by using TSK and Mamdani models[3]. Combination
of linguistic values for the speed and direction determines rules for used models.
By using genetic algorithms (GA) we obtain an ideal set of rules to fast ingoing
of agents to the train.

IF (x1 is A1,1) AND . . . (x is An,1) THEN (y1 is C1)
IF (x1 is A1,1) AND . . . (x is An,1) THEN (y2 is C2)

...
IF (x1 is A1,r) AND . . . (x is An,r) THEN (yr is Cr)

(1)

IF (x1 is A1,1) AND . . . (xn is An,1) THEN (y1 is f (x1,x2, x3, ..., xn))
IF (x1 is A1,1) AND . . . (xn is An,1) THEN (y2 is f (x1,x2, x3, ..., xn))

...
IF (x1 is A1,r) AND . . . (xn is An,r) THEN (yr is f (x1,x2, x3, ..., xn))

(2)

3 Movement speed of each agent

Inputs for the movement speed are linguistic variables of Distance from the
obstacle in direction, Age of the agent, Crowd density, State of health of the
agent and Remaining time to departure of the train. Output of the model is
given by speed of the agent. Rules are not generated by genetic algorithm but
are created a priori.

Linguistic variables and rules are selected according to real life. We selected
5 linguistics variables which could take account of influence of speed. The first
used variable is Age of the agent which represents real age of a person. For this
variable we defined three linguistic values – youth, adult and senior.

Speed also depends on crowd density. In addition, age depends on state of
health which is an another variable. The State of health represents its movement
disorders, e.g. wheelchair user, broken limb, mental disorders, etc. Linguistic
values for this variable are Healthy user and Wheelchair user.
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Figure 1: Rules and behavior patterns mapping of agents

Figure 2: Age of the agent, State of health, Remaining time to departure of the
train and Speed of the agent

Last variable Remaining time to departure of the train describes hurrying of
the agent. Values are Long and Short.

All sets of antecedent are defined. So that, we can define consequent (output)
which represents Speed of the agent. Maximal speed is given by running world
record. Names of linguistics values are Dawdled, Common, Fast, Sprint and
Maximal.

4 Movement direction of each agent

In this phase we have created model of speed movement of each agent. Self-
evaluation, fear, social norms and cultural patterns are also known factors influ-
ence of the behavior[2]. Direct relation among these factors and behavior does
not exist. In other words, we cannot with absolute certainty know how people
will act. Subsequently, we must create the second model which represents move-
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Time
Age train Crowd density State of health Speed

dep. of the agent

youthful long free passage healthy user common
youthful long free passage wheelchair user dawdled
youthful long limited move healthy user common
youthful long limited move wheelchair user dawdled
youthful short free passage healthy user fast and sprint
youthful short free passage wheelchair user common
youthful short limited move healthy user fast
youthful short limited move wheelchair user common

adult long free passage healthy user common and fast
adult long free passage wheelchair user dawdled
adult long limited move healthy user dawdled and com.
adult long limited move wheelchair user dawdled
adult short free passage healthy user maximal
adult short free passage wheelchair user common
adult short limited move healthy user fast
adult short limited move wheelchair user common
senior long free passage healthy user common
senior long free passage wheelchair user common
senior long limited move healthy user dawdled
senior long limited move wheelchair user dawdled
senior short free passage healthy user fast and sprint
senior short free passage wheelchair user dawdled
senior short free passage wheelchair user common
senior short limited move healthy user dawdled and com.
senior short limited move wheelchair user dawdled

Table 1: Linguistic model for speed
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Figure 3: The shortest way and Distance to obstacle in actual direction, Crowd
density and Direction of rounding

ment direction which is influenced by different parameters such as The shortest
way, Distance to obstacle in actual direction, Crowd density in actual direction,
Direction of rounding. For the variable The shortest way and Distance to obsta-
cle in actual direction are linguistic values named as Left, Slightly left, Straight,
Slightly right and Right.

Linguistic values for Crowd density in actual direction are Free passage and
Limited movement. For Direction of rounding are linguistic values named as
Very near, Near and Far.

4.1 Using genetic algorithms for this simulation

This phase is solved by using genetic algorithms (GA) inspired by biological
genetic processes of cells. The GA is defined by 7-tuple as follows[4]:

GA=(N,P, f,Θ,Ω,Ψ, τ), (3)

where P is population containing N elements, Θrepresents parent selection op-
erator, which select u elements from P, Ωis set of genetic operators, which in-
clude crossover operator Ωc, mutation operator Ωm and others problem-oriented
or implementation-oriented specific operators, which all together generate v off-
spring from u parents. Ψis deletion operator, which removes v selected elements
from actual population P(t). v elements is add to new population P(t+1) after
it, τ is stop-criterion. Parent selection operator Θand genetic operators Ωhave
stochastic character, deletion operator Ψis generally deterministic. Chromo-
some is compound of genes; each gene represents certain step of the Scenario.
Stop criterion of the evolution process is given by ingoing of all agents to the
train.

To individual selection we use Weighted Roulette algorithm. Size of parts
on the roulette of each individual is given by its fitness value.

fi∑N
i fi

, (4)
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probability of selection of i -th individual is given by the formula (4) where
fiis the fitness value of i -th individual and N is the number of individuals in
population. The following formula describes fitness function

f =
60

c
g + t, (5)

where g is number of agents in goal, t remaining time and c total number of all
agents.

5 Simulation experiments with SimDav

In this section we will present practical experimental simulation which uses
Scheme with library Fuznet which is able to create a structure of a TSK and
Mamdani model based on previously discussed theoretical background.

Within the practical experiment has been generated population for TSK.
We used 10 agents and the simulation ran for 3 days a has been generated
3767 generations, each of them contains 8 individuals though all agents did
not get to the train. Number of combination of linguistic values in antecedent
was of 150 and output linguistic variable have 5 values, so that totally 750
combinations (genes in individuals). This simulation was very slow and did not
fulfill expected goal (all agents got to the train). Due to these limitations has
been optimized genetic operators of crossover and mutation to optimal solution.
This non-optimal version of GA used one point crossover and mutated only on
one position in chromosome. Structure of each individual that each 5 rules
(genes in line) have the same antecedent part.

New version of GA is based on generation of population for both of models –
TSK an Mamdani. In case of new optimized version of GA it was configured with
probability of 50 % of crossovered selected individuals. Amount of selection was
5 genes. Mutation was changed similarly. In other words, each individual can
mutates each 5 genes. Position of the mutation is random and their number is
various. The following figure shows increasing of the fitness values of individuals
depending on number of generations. Highlighted line of fitness value of 60
means that all agents got to the train. For both of models were used the same
genetic operators settings, number of individuals, agents and their parameters.
Initial population was generated randomly and because could be make more
favorable one of used models.

Parameters and number of agents is equal as for previous experiment. We
investigate that population size influences time of finding an ideal individual. As
before we compared both of models, TSK and Mamdani. With larger population
we found an optimal solution more rapidly.

In addition, we changes number of agents to 20 from 10 and we created of 15
combinations of frequency of types of behavior patterns for agents, see Table 2.
In this experiment we used TSK only with the best individual from generations.
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Figure 4: Dependency number of generation on their size (left), Dependency
number of generation on number of individuals in generation (right)

Binary Youthful Adult Senior Senior in a wheelchair Time
combination

0001 4 4 4 8 180
0010 4 4 8 4 175
0011 3 3 7 7 134
0100 4 8 4 4 134
0101 3 7 3 7 140
0110 3 7 7 3 140
0111 2 6 6 6 142
1000 8 4 4 4 128
1001 7 3 3 7 159
1010 7 3 7 3 159
1011 6 2 6 6 161
1100 7 7 3 3 134
1101 6 6 2 6 118
1110 6 6 6 2 116
1111 5 5 5 5 134

Table 2: Time dependency on combination of Agents behavior patterns

6 Conclusion

The main aim of the presented paper was to simulate of ingoing crowd at the
railway station with creating behavior patterns, an application, data processing
from the simulation and experiments. We created behavior patterns using TSK
and Mamdani. In this developed system we use rules generated by genetic
algorithm. Also we designed linguistic variables and simulation environment
and also we improved using GA for this specific situation.

We investigated generation of populations by using both of models and sub-
sequently we proved that TSK is better for this situation. Experiments with
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different population size proved that larger population resulted to faster conver-
gence in time to finding an optimal individual. The last experiment investigated
dependency of ingoing time on combination of Agents behavior patterns.

In future, the application will be improved with environment editor and
we also use different inputs into Fuznet. This work only simulates presumable
behavior of the crowd but we do not known what people will do in different
situations, conditions and unexpected occurrences.
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Abstract

The process of document context extracting, which expresses the basic
topic (or topics) of a text, is unusually difficult algorithmic task. In our
previous work we were dealing mainly with the question of the basic defi-
nition of document similarity and process of searching of (similar) sections
of text, regardless of the language of the document. This uninformed ap-
proach is algorithmically more complex than the classic approach, which
does use different linguistic tools of the given language (thesauri, stem-
mers, etc.).
In practical experiments on a large-scale extraction storage it is necessary
to solve problems that arise from the nature of the information processed
of document - each language has its own dictionary and the authors use
only a subset; documents must be acquired somehow, must be processes
and stored for later measurements.
Furthermore, the described issues are a small selection from the experience
gained from document context extraction experiments in the corporate
sector - especially managers are exposed to the high information pressure
and is why tools of business intelligence are of great importance.

1 Introduction and Motivation

In [1] and [2] we discuss general procedures for basic conformity and similarity
characteristics of the documents for the purpose of plagiarism detection, in
[3] are introduced some basic algorithmic procedures to calculate and visualize
(plagiarized) context of the document and [4] shows some application in business
decision supporting systems.

In the terms of the practical usability, the most important area of interest is
just the area of corporate management - corporate managers I both the profit
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and non-profit companies have to monitor customer reviews on the internet,
working with positive (but mostly negative) reactions, trying to act proactively
and strengthen customer relationships. In this paper we describe a case where
there is an automatic system that scans (multilingual) website containing cus-
tomer references and must be able to correctly categorize the various posts,
evaluate and extract their context.

Experiments described below were performed on a corpus of 2,305 theses in
Czech and Slovak qualification works defended at the University of Economics
in Prague.

2 Problems of Natural Text Processing

Analysis of the natural text compared to any artificial language (such as any
programming language) is a much more difficult task - any artificial language has
a clear and unequivocal rules for subsequent analysis of the content or at least
structure; any deviations are identified as errors and the analysis of non-valid
text is not possible. A set of rules for such a language is finite and relatively
small and contains maximally thousands of rules.

For documents written in any in natural language, there is a set of rules to
follow in each language. The main problem is that every speaker adapts these
common rules to their own needs and each language changes and adapts over
time. For example, if we consider one hundred customers describing the same
(good or bad) experience with the product, we get almost one hundred of (very)
different specific expressions, which, however, are identical in content.

Because the language in which customers write their assessments is very often
colloquial, expressive and of different ”linguistic quality” (spelling, grammar),
the monitoring system that must contain specific degree of tolerance to errors.
This system must thus include elements of fuzzy logic and practical experiments
show that the key importance of a correct set of system parameters.

Statistical models [5] often use additional vocabularies (often synonymous)
to improve their function. These dictionaries are not an essential element of
these systems the analysis of customer references has to identify all texts re-
gardless of single word or its synonym. The main problem, however, is that
these dictionaries are not freely available and introduces more expenses to any
system.

The larger corpus of documents on which we build a statistical model we
have, the more it is possible to do this without the dictionary methods. It is
also the aim of our experiments

3 Document Preprocessing

The basic steps of pre-processing of the respective text before the context anal-
ysis must be performed first. A few general steps are adequately described and
for the purpose of customer reviews analysis are reduced to basic conversion to
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plain text; these documents need not contain only text, but can enclose pictures,
graphs, diagrams, formulas, tables, and other objects. These objects are often
difficult to represent by plain text.

Even the text itself can be formatted using a different styles and fonts.
Text can be variously divided (into sentences, paragraphs and chapters). The
additional formatting enhances information beyond simple text - this added
value is also interesting from the view of document context extraction. Two
words (terms, topics) which are located next to each other in the same sentence
have ”stronger bond” than the words that are adjacent, but stands at the end
of first and beginning of the next sentence.

3.1 Tokenization

As a token we denote [6] such an identification of lexical units, which have
separate meaning and function. Token may yet be made up of one word or
a steady phrase; thus the set of words is in any language only a subset of its
tokens. Tokens are composed of one or more characters - eg. word, number,
date, website address, expressions containing mixed letters, numbers and other
characters, sentence delimiters, separators and more complex sentences.

For example, [5] provides two different ways of creating tokens from the doc-
ument - top-down and bottom-up algorithms. The need for a set of tokenizing
rules for each language is the reason why it is not usable in any uninformed and
multi-language system built only on statistical analysis.

The output of the tokenization is then a list of tokens, de facto the gross
structure of the text converted to basic tokens (Figure 1).

Figure 1: Textual representation of the output of basic lexical analyzer.

Also, sentences may contain significantly more complicated tokens. Complex
tokens, such as abbreviations or phrases, are worth to analyze and detect at
other layers of the analyzer, which stands immediately above the lexical analyzer
(Figure 2).

Figure 2: Textual representation of the output of advanced lexical analyzer.
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3.2 Stop words and document language detection

Stop word is a word or phrase (thus token) that has a high incidence among
documents, and at the same time it is a word that is often used within a single
document - frequent pronouns, prepositions, conjunctions and other words. Stop
words for text have a very low added information value, and can be ruled out of
context analysis completely; procedure to find stop words in the single-language
corpus is very easy and well described [7].

3.3 Stemming

Many languages (especially Slavic) can generate dozens of different forms of the
same word. For further analysis is necessary to find a common morphological
root of each word - lemma.

As stemming we call the process of searching for the base of the word for
further processing. The result of this adjustment is the stem, which may not
coincide with linguistic root-words, but for many tasks of text mining this sim-
plification is sufficient.

In practice, the multilingual system must use algorithmic stemmer. These
are facing with a problem of many exceptions in the language and the stem-
ming procedure may result in the implementation of two types of errors - Over-
stemming and Under-stemming [8].

4 Proposed solution: The algorithm based on
identifiers

The basic task of document context extraction is the searching (and subsequent
comparison and statistical analysis) of exactly defined sections of the text. At
this point it will be introduced and discussed the possibility of using algorithms
based on wildcard identifiers.

Out of this option we may consider eg. vector algorithms (text or its parts
is converted to vectors, where each position in this vector corresponds to a word
in the dictionary and the value at this position corresponds to the frequency
of the word in a document) or plain text processing algorithms (algorithms are
based on repeated re-scanning of the sample text in the document, which is a
very time-consuming and inefficient method).

Experiments show that text identifiers are the fastest method that enables
any further document processing. The main attention is paid to methods that
use n-grams - especially bigrams - and their unordered modifications [9].

4.1 Algorithms working with text identifiers

The algorithm in this case does not work with tokens directly in their text
representation, but with the numeric identifiers for each token. Characters that
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are not part of words (commas, dots, dashes, parentheses) are eliminated or
their presence in the text is represented by other means.

A necessary condition is that the identifiers used in this transformation
match the identifiers that were used in the transformation of the documents
in the document repository. Identifiers can be assigned almost arbitrarily, but
different words have to be always represented by different identifier. In practice,
assignment of incremented numbers seems to be suitable.

This approach of text representation highlights the importance of document
normalization and good stemming of individual words. Two different stems,
which differ from each other even by a single letter, will receive a totally different
identifier. The algorithm then has only to compare those identifiers and check
their identity. Faulty stemming can generate the same root word for many
different identifiers - this will result in errors in calculation of the document
context.

The cardinality of the set of identifiers must completely cover all the possible
words that can come across in the documents. The above declared test corpus
of 2,305 documents in Czech and Slovak languages after verbal standardization
reached the cardinality of vocabulary over 200,000 unique words. The size of
vocabulary grows almost continuously with the increasing number of processed
documents - but the Czech and Slovak vocabulary will probably not outgrow
the number of 500,000 words.

Figure 3: The relation between the dictionary size and the method of word
normalization.

This approximately corresponds to the identifier of at least 19 bits - in prac-
tice it is appropriate to use the next common length of 32 bits; this represents
a total of 4,294,967,296 different tokens. From this perspective, there is con-
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siderable potential for reserve growth in vocabulary and it is possible to assign
identifiers for many other languages at once.

Numeric representation of the tokens has two major advantages:

• higher efficiency than string representation,

• faster implementation of atomic operations on numbers than on strings.

4.2 Sentence breakdown

The documents consist of a set of sentences that are further comprised of indi-
vidual words. Any human reader does not perceive the words as isolated, but
always in the context of other words in a sentence; if the document does not
contain uppercase and lowercase letters, commas or periods, it would be very
difficult for the reader to get orientation in the information.

In pursuit of the most accurate document context extraction it is very im-
portant to observe the quality of the tokenization. Unfortunately, the sentences
cannot be determined only on the basis of dot and comma separators (or other
characters, such as parentheses, dash, ellipsis, and more). These symbols are
commonly part of tokens - the best examples of such a behavior include short-
cuts, web and email addresses, initials and more. To distinguish the real ends
of phrases or sentences these tokens should be interpreted.

4.3 Bigram document representation

Bigram is a word pair and we always assume unordered 2-gram introduced in
[9]. From this viewpoint, the words A and B will always generate bigram AB,
regardless of their sequence in the sentence.

The total amount of bigram matches is enormous and without some pre-
filtering of documents the system using only bigrams will face huge performance
problems. On the other hand, this search is the most tolerant of all possibilities
of text modifications. The benefits of using bigrams proves Figure 4.

Figure 4: Bigram representation and the resistance to changes in the text
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Bigram may be defined as two adjacent tokens (Figure 5). Then, five token
(A, B, C, D E) sentence is represented the following set of word pairs: AB, BC,
CD, DE.

Figure 5: Bigrams based only on adjacent tokens.

For bigrams is not strictly necessary to control only the direct neighbors. It
is also possible to check words in the sentence which are distant from each other
over a few words. Figure 5 shows the pairing of words in a sentence to create
bigrams at a distance of three. In to the further process of context extraction
enter following bigrams: AB, AC, AD, BC, BD, BE, CD, CE, DE. It can be
seen that the number bigrams increased from four to nine, which is more than
double the number of classic bigrams (Figure 6).

Figure 6: Bigrams overlooking three tokens.

4.3.1 Bigrams sentence overlap

To fit the sentence into the context of the text it is possible to choose another
parameter - the length of overlook to the next sentence. This view may be
shorter than the standard of overlook within the sentence.

Methods working with bigrams are specially labeled according to the value
of both perspectives. Schematic entry is the X-Y method, where the value of
X marks the length of the overlook into a sentence and the value of Y marks
the length of the overlook into the next sentence. Thus, Figure 5 shows a 1-0
system, Figure 6 shows a 3-0 system.

4.3.2 Some bigram characteristics

As well as the number of unique words in the dictionary grows, it is expected
that the number of unique bigrams also increase with the number of processed
documents. The number of unique bigrams however grow significantly faster
than the size of vocabulary and the slowdown in the growth will occur later -
the choice of bigram generation method will have significant influence. Figure 6
indicates the growth in the number of unique bigrams depending on the number
of processed documents from the corpus.
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Figure 7: Number of unique bigrams.

The extension of overlook leads to an increase in the number of unique bi-
grams. We can also notice a trend of slowing down the growth of new bigrams
when processing large quantities of documents. This decline in growth is dif-
ferent for each method of bigrams calculation, but the percentage drop of the
number of unique bigrams growth over the first 500 processed documents is very
similar for all methods (see Figure 8).

Figure 8: The growth rate of the number of unique bigrams depending on the
method and the number of documents.

For the 1-1 bigrams we can estimate the growth of the number of unique
bigrams as approximately 20 % for 4,000 processed documents. This means
500,000 new unique bigrams that are obtained by analysis of the documents in
the order of 3,501 to 4,000. The growth will drop to 4 % after processing 7,000
documents.

5 Conclusion

In this paper we have discussed possible approaches to some aspects of the
process of the document context extraction. The main attention was paid to
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methods that work with text identifiers. The size of blocks of few words, in
other words n-gram, proved to be a good strategy for searching in large text
corpora with a reasonable compromise between accuracy and detection perfor-
mance. Also a discussion about the pros and cons of using different bigrams
was provided.
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